Central nervous system infection (CNSI) is a significant type of infection that plagues the fields of neurology and neurosurgical science. Prompt and accurate diagnosis of CNSI is a major challenge in clinical and laboratory assessments; however, developing new methods may help improve diagnostic protocols. This study evaluated the second-generation micro/nanofluidic chip platform (MNCP-II), which overcomes the difficulties of diagnosing bacterial and fungal infections in the CNS. The MNCP-II is simple to operate, and can identify 44 genus or species targets and 35 genetic resistance determinants in 50 minutes. To evaluate the diagnostic accuracy of the second-generation micro/nanofluidic chip platform for CNSI in a multicenter study. The limit of detection (LOD) using the second-generation micro/nanofluidic chip platform was first determined using six different microbial standards. A total of 180 bacterium/fungi-containing cerebrospinal fluid (CSF) cultures and 26 CSF samples collected from CNSI patients with negative microbial cultures were evaluated using the MNCP-II platform for the identification of microorganism and determinants of genetic resistance. The results were compared to those obtained with conventional identification and antimicrobial susceptibility testing methods. The LOD of the various microbes tested with the MNCP-II was found to be in the range of 250-500 copies of DNA. For the 180 CSF microbe-positive cultures, the concordance rate between the platform and the conventional identification method was 90.00%; eight species attained 100% consistency. In the detection of 9 kinds of antibiotic resistance genes, including carbapenemases, ESBLs, aminoglycoside, vancomycin-related genes, and mecA, concordance rates with the conventional antimicrobial susceptibility testing methods exceeded 80.00%. For carbapenemases and ESBLs-related genes, both the sensitivity and positive predictive values of the platform tests were high (>90.0%) and could fully meet the requirements of clinical diagnosis. MNCP-II is a very effective molecular detection platform that can assist in the diagnosis of CNSI and can significantly improve diagnostic efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994612 | PMC |
http://dx.doi.org/10.1038/s41598-020-58670-8 | DOI Listing |
Lab Chip
January 2025
NASCENT Engineering Research Center, The University of Texas at Austin, Austin, Texas 78758, USA.
Despite being a high-resolution separation technique, deterministic lateral displacement (DLD) technology is facing multiple challenges with regard to design, manufacture, and operation of pertinent devices. This work specifically aims at alleviating difficulties associated with design and manufacture of DLD chips. The process of design and production of computer-aided design (CAD) mask layout files that are typically required for computational modeling analysis, optimization, as well as for manufacturing DLD-based micro/nanofluidic chips is complex, time-consuming, and often necessitates a high level of expertise in the field.
View Article and Find Full Text PDFSmall
January 2025
School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies.
View Article and Find Full Text PDFSmall
November 2024
School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan, 680749, South Korea.
This study utilizes molecular dynamics (MD) simulations and continuum frameworks to explore electroosmotic flow (EOF) in nanoconfined aqueous electrolytes, offering a promising alternative to conventional micro-/nanofluidic systems. Although osmotic behavior in these environments is deeply linked to local fluid properties and interfacial dynamics between the fluid and electrolyte solutions, achieving a complete molecular-level understanding has remained challenging. The findings establish a linear relationship between electric field strength and fluid velocity, uncovering two distinct transport regimes separated by a critical threshold, with a markedly intensified flow in the second regime.
View Article and Find Full Text PDFSmall
October 2024
Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
Ionic diodes provide ionic current rectification (ICR), which is useful for micro-/nanofluidic devices for ionic current-mediated applications. However, the modulation of ICR is not fully developed, and current challenges include limited active control and localized modulation for further multiplexing of micro-/nanofluidic ionic diodes. Herein, a microfluidic device integrated with particle-assembly-based ionic diodes (PAIDs) and a gas-flow channel above them is presented.
View Article and Find Full Text PDFAnal Chem
April 2024
Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Ulsan 44919, Republic of Korea.
Recent advancements in micro/nanofluidics have facilitated on-chip microscopy of cellular responses in a high-throughput and controlled microenvironment with the desired physicochemical properties. Despite its potential benefits to combination drug discovery, generating a complete combinatorial set of concentration gradients for multiple reagents in an array format remains challenging. The main reason is limited layouts of conventional micro/nanofluidic systems based on two-dimensional channel networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!