Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non-native kelp washed up on Antarctic beaches led us to question the permeability of these barriers to species dispersal. According to the literature, over 70 million kelp rafts are afloat in the Southern Ocean at any one time. These living, floating islands can play host to a range of passenger species from both their original coastal location and those picked in the open ocean. Driven by winds, currents and storms towards the coast of the continent, these rafts are often cited as theoretical vectors for the introduction of new species into Antarctica and the sub-Antarctic islands. We found non-native kelps, with a wide range of "hitchhiking" passenger organisms, on an Antarctic beach inside the flooded caldera of an active volcanic island. This is the first evidence of non-native species reaching the Antarctic continent alive on kelp rafts. One passenger species, the bryozoan Membranipora membranacea, is found to be an invasive and ecologically harmful species in some cold-water regions, and this is its first record from Antarctica. The caldera of Deception Island provides considerably milder conditions than the frigid surrounding waters and it could be an ideal location for newly introduced species to become established. These findings may help to explain many of the biogeographic patterns and connections we currently see in the Southern Ocean. However, with the impacts of climate change in the region we may see an increase in the range and number of organisms capable of surviving both the long journey and becoming successfully established.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994651 | PMC |
http://dx.doi.org/10.1038/s41598-020-58561-y | DOI Listing |
Glob Chang Biol
August 2024
Department of Marine Science, University of Otago, Dunedin, New Zealand.
Antarctica's unique marine ecosystems are threatened by the arrival of non-native marine species on rafting ocean objects. The harsh environmental conditions in Antarctica prevent the establishment of many such species, but warming around the continent and the opening up of ice-free regions may already be reducing these barriers. Although recent genomic work has revealed that rafts-potentially carrying diverse coastal passengers-reach Antarctica from sub-Antarctic islands, Antarctica's vulnerability to incursions from Southern Hemisphere continents remains unknown.
View Article and Find Full Text PDFCommun Biol
June 2023
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia.
Ecology
October 2022
Universidade de São Paulo, Ribeirão Preto, Brazil.
Curr Biol
July 2022
Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile. Electronic address:
Globally, species distributions are shifting in response to environmental change, and those that cannot disperse risk extinction. Many taxa, including marine species, are showing poleward range shifts as the climate warms. In the Southern Hemisphere, however, circumpolar oceanic fronts can present barriers to dispersal.
View Article and Find Full Text PDFSci Rep
January 2020
University of Hull, Department of Biological and Marine Sciences, Cottingham Road, Hull, HU6 7RX, UK.
Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non-native kelp washed up on Antarctic beaches led us to question the permeability of these barriers to species dispersal. According to the literature, over 70 million kelp rafts are afloat in the Southern Ocean at any one time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!