Regulation of micoRNA2111 and its target IbFBK in sweet potato on wounding.

Plant Sci

Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan. Electronic address:

Published: March 2020

Plant microRNAs (miRNAs) are non-coding RNAs, which are composed of 20-24 nucleotides. MiRNAs play important roles in plant growth and responses to biotic and abiotic stresses. Wounding is one of the most serious stresses for plants; however, the regulation of miRNAs in plants upon wounding is not well studied. In this study, miR2111, a wound-repressed miRNA, identified previously in sweet potato (Ipomoea batatas cv Tainung 57) by small RNA deep sequencing was chosen for further analysis. Based on sweet potato transcriptome database, F-box/kelch repeat protein (IbFBK), a target gene of miR2111, was identified. IbFBK is a wound-inducible gene, and the miR2111-induced cleavage site in IbFBK mRNA is between the 10th and 11th nucleotides of miR2111. IbFBK is a component of the E3 ligase SCF (SKP1-Cullin-F-box) complex participating in protein ubiquitination and degradation. The results of yeast two-hybrid and bimolecular fluorescence complementation assays demonstrate that IbFBK was conjugated with IbSKP1 through the F-box domain in IbFBK N-terminus to form SCF complex, and interacted with IbCNR8 through the kelch-repeat domain in IbFBK C-terminus. The interaction of IbFBK and IbCNR8 may lead to the ubiquitination and degradation of IbCNR8. In conclusion, the suppression of miR2111 resulted in the increase of IbFBK, and may regulate protein degradation of IbCNR8 in sweet potato responding to wounding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2019.110391DOI Listing

Publication Analysis

Top Keywords

sweet potato
16
ibfbk
10
ubiquitination degradation
8
domain ibfbk
8
degradation ibcnr8
8
regulation micorna2111
4
micorna2111 target
4
target ibfbk
4
sweet
4
ibfbk sweet
4

Similar Publications

Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07.

Food Res Int

February 2025

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:

In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.

View Article and Find Full Text PDF

Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF

The conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, the Netherlands, and co-rapporteur Member State, France, for the pesticide active substance spinosad and the assessment of applications for maximum residue levels (MRLs) are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012. The conclusions were reached on the basis of the evaluation of the representative uses of spinosad as insecticide on bulb/dry onions, maize (fodder and grain), sweet corn, grapes (table and wine), lettuce, potato, aubergine, pepper and tomato.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!