Background: Each year in the USA, over 2.4 million people experience mild traumatic brain injury (TBI), which can induce long-term neurological deficits. The dentate gyrus of the hippocampus is notably susceptible to damage following TBI, as hilar mossy cell changes in particular may contribute to post-TBI dysfunction. Moreover, microglial activation after TBI may play a role in hippocampal circuit and/or synaptic remodeling; however, the potential effects of chronic microglial changes are currently unknown. The objective of the current study was to assess neuropathological and neuroinflammatory changes in subregions of the dentate gyrus at acute to chronic time points following mild TBI using an established model of closed-head rotational acceleration induced TBI in pigs.
Methods: This study utilized archival tissue of pigs which were subjected to sham conditions or rapid head rotation in the coronal plane to generate mild TBI. A quantitative assessment of neuropathological changes in the hippocampus was performed via immunohistochemical labeling of whole coronal tissue sections at 3 days post-injury (DPI), 7 DPI, 30 DPI, and 1 year post-injury (YPI), with a focus on mossy cell atrophy and synaptic reorganization, in context with microglial alterations (e.g., density, proximity to mossy cells) in the dentate gyrus.
Results: There were no changes in mossy cell density between sham and injured animals, indicating no frank loss of mossy cells at the mild injury level evaluated. However, we found significant mossy cell hypertrophy at 7 DPI and 30 DPI in anterior (> 16% increase in mean cell area at each time; p = < 0.001 each) and 30 DPI in posterior (8.3% increase; p = < 0.0001) hippocampus. We also found dramatic increases in synapsin staining around mossy cells at 7 DPI in both anterior (74.7% increase in synapsin labeling; p = < 0.0001) and posterior (82.7% increase; p = < 0.0001) hippocampus. Interestingly, these morphological and synaptic alterations correlated with a significant change in microglia in proximity to mossy cells at 7 DPI in anterior and at 30 DPI in the posterior hippocampus. For broader context, while we found that there were significant increases in microglia density in the granule cell layer at 30 DPI (anterior and posterior) and 1 YPI (posterior only) and in the molecular layer at 1 YPI (anterior only), we found no significant changes in overall microglial density in the hilus at any of the time points evaluated post-injury.
Conclusions: The alterations of mossy cell size and synaptic inputs paired with changes in microglia density around the cells demonstrate the susceptibility of hilar mossy cells after even mild TBI. This subtle hilar mossy cell pathology may play a role in aberrant hippocampal function post-TBI, although additional studies are needed to characterize potential physiological and cognitive alterations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993507 | PMC |
http://dx.doi.org/10.1186/s12974-020-1720-0 | DOI Listing |
Elife
January 2025
Department of Neurobiology, Harvard Medical School, Boston, United States.
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.
The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Neurosurgery, Freiburg University Medical Center, Breisacher Str. 64, 79106 Freiburg, Germany.
Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.
For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!