Liposomal formulations for the treatment of cancer and other diseases are the most common form of nanotechnology enabled pharmaceuticals (NEPs) submitted for market approval and in clinical application today. The accurate characterization of their physical-chemical properties is a key requirement; in particular, size, size distribution, shape, and physical-chemical stability are key among properties that regulators identify as critical quality attributes. Here we develop and validate an optimized method, based on multi-detector asymmetrical-flow field flow fractionation (MD-AF4) to accurately and reproducibly separate liposomal drug formulations into their component populations and to characterize their associated size and size distribution, whether monomodal or polymodal in nature. In addition, the results show that the method is suitable to measure liposomes in the presence of serum proteins and can yield information on the shape and physical stability of the structures. The optimized MD-AF4 based method has been validated across different instrument platforms, three laboratories, and multiple drug formulations following a comprehensive analysis of factors that influence the fractionation process and subsequent physical characterization. Interlaboratory reproducibility and intra-laboratory precision were evaluated, identifying sources of bias and establishing criteria for the acceptance of results. This method meets a documented high priority need in regulatory science as applied to NEPs such as Doxil and can be adapted to the measurement of other NEP forms (such as lipid nanoparticle therapeutics) with some modifications. Overall, this method will help speed up development of NEPS, and facilitate their regulatory review, ultimately leading to faster translation of innovative concepts from the bench to the clinic. Additionally, the approach used in this work (based on international collaboration between leading non-regulatory institutions) can be replicated to address other identified gaps in the analytical characterization of various classes of NEPs. Finally, a plan exists to pursue more extended interlaboratory validation studies to advance this method to a consensus international standard.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146538PMC
http://dx.doi.org/10.1016/j.jconrel.2020.01.049DOI Listing

Publication Analysis

Top Keywords

drug formulations
12
physical characterization
8
liposomal drug
8
multi-detector asymmetrical-flow
8
asymmetrical-flow field
8
field flow
8
flow fractionation
8
size size
8
size distribution
8
method
6

Similar Publications

Objectives: Critically ill newborn infants often require simultaneous administration of multiple intravenous (IV) solutions through the same catheter lumen, making compatibility of these solutions crucial in neonatal intensive care units (NICUs). This study aimed to investigate the physical compatibility of insulin aspart, lidocaine, alprostadil and vancomycin with individualised two-in-one parenteral nutrition (PN).

Methods: The study was conducted at the hospital pharmacy's drug compounding facility of the University Medical Centre Utrecht.

View Article and Find Full Text PDF

Ultrasound-assisted efficient targeting of doxorubicin to the tumor microenvironment by lyso-thermosensitive liposomes of varying phase transition temperatures.

Eur J Pharm Sci

January 2025

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.

View Article and Find Full Text PDF

Advancing medication compounding: Use of a pharmaceutical 3D printer to auto-fill minoxidil capsules for dispensing to patients in a community pharmacy.

Int J Pharm

January 2025

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address:

Compounding medications in pharmacies is a common practice for patients with prescriptions that are not available commercially, but it is a laborious and error-prone task. The incorporation of emerging technologies to prepare personalised medication, such as 3D printing, has been delayed in smaller pharmacies due to concerns about potential workflow disruptions and learning curves associated with novel technologies. This study examines the use in a community pharmacy of a pharmaceutical 3D printer to auto-fill capsules and blisters using semisolid extrusion, incorporating an integrated quality control system.

View Article and Find Full Text PDF

Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.

View Article and Find Full Text PDF

Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial.

Lancet Neurol

February 2025

Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:

Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!