The effects of ascorbate on adult cell fate specification remain largely unknown. Using our stepwise and chemically defined system to derive lateral mesoderm progenitors from human pluripotent stem cells (hPSCs), we found that ascorbate increased the expression of mesenchymal stromal cell (MSC) markers, purity of MSCs, the long-term self-renewal and osteochondrogenic capacity of hPSC-MSCs in vitro. Moreover, ascorbate promoted MSC specification in an iron-dependent fashion, but not in a redox-dependent manner. Further studies revealed that iron synergized with ascorbate to regulate hPSC-MSC histone methylation, promote their long-term self-renewal, and increase their osteochondrogenic capacity. We found that one of the histone demethylases affected by ascorbate, KDM4B, was necessary to promote the specification of hPSC-MSCs. This mechanistic understanding led to the metabolic optimization of hPSC-MSCs with an extended lifespan in vitro and the ability to fully repair cartilage defects upon transplantation in vivo. Our results highlight the importance of ascorbate and iron metabolism in adult human cell fate specification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013236 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2020.01.002 | DOI Listing |
Int J Mol Sci
December 2024
Reproductive Biology Laboratory, Amsterdam University Medical Center Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania.
Relapse and metastasis are the major challenges that stand in the way of cancer healing and survival, mainly attributed to cancer stem cells (CSCs). Their capabilities of self-renewal and tumorigenic potential leads to treatment resistance development. CSCs function through signaling pathways such as the Wnt/β-catenin cascade.
View Article and Find Full Text PDFUnlabelled: The integrity of the hematopoietic stem cell (HSC) pool relies on efficient long-term self-renewal and the timely removal of damaged or differentiation-prone HSCs. Previous studies have demonstrated the PERK branch of the unfolded protein response (UPR) drives specific programmed cell death programs to maintain HSC pool integrity in response to ER stress. However, the role of PERK in regulating HSC fate remains unclear.
View Article and Find Full Text PDFFront Immunol
January 2025
Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
Mesenchymal stem cells (MSCs), recognized for their self-renewal and multi-lineage differentiation capabilities, have garnered considerable wide attention since their discovery in bone marrow. Recent studies have underscored the potential of MSCs in immune regulation, particularly in the context of autoimmune diseases, which arise from immune system imbalances and necessitate long-term treatment. Traditional immunosuppressive drugs, while effective, can lead to drug tolerance and adverse effects, including a heightened risk of infections and malignancies.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India. Electronic address:
Triple-negative breast cancer (TNBC) is a subtype known for its aggressive nature, high rates of recurrence, and treatment resistance, largely attributed to the presence of breast cancer stem cells (BCSCs). Traditional therapies often struggle to eliminate BCSCs, which contributes to tumor recurrence. One promising strategy for addressing this challenge is targeting the Notch signaling pathway, which plays a critical role in the self-renewal and maintenance of BCSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!