Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors.

Mol Cell

The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: February 2020

Corticotropin-releasing factor (CRF) and the three related peptides urocortins 1-3 (UCN1-UCN3) are endocrine hormones that control the stress responses by activating CRF1R and CRF2R, two members of class B G-protein-coupled receptors (GPCRs). Here, we present two cryoelectron microscopy (cryo-EM) structures of UCN1-bound CRF1R and CRF2R with the stimulatory G protein. In both structures, UCN1 adopts a single straight helix with its N terminus dipped into the receptor transmembrane bundle. Although the peptide-binding residues in CRF1R and CRF2R are different from other members of class B GPCRs, the residues involved in receptor activation and G protein coupling are conserved. In addition, both structures reveal bound cholesterol molecules to the receptor transmembrane helices. Our structures define the basis of ligand-binding specificity in the CRF receptor-hormone system, establish a common mechanism of class B GPCR activation and G protein coupling, and provide a paradigm for studying membrane protein-lipid interactions for class B GPCRs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2020.01.013DOI Listing

Publication Analysis

Top Keywords

crf1r crf2r
12
corticotropin-releasing factor
8
crf2r members
8
members class
8
receptor transmembrane
8
class gpcrs
8
activation protein
8
protein coupling
8
molecular basis
4
basis hormone
4

Similar Publications

Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury.

View Article and Find Full Text PDF

Background: Binge alcohol drinking is a dangerous pattern of consumption that can contribute to the development of more severe alcohol use disorders (AUDs). Importantly, the rate and severity of AUDs has historically differed between men and women, suggesting that there may be sex differences in the central mechanisms that modulate alcohol (ethanol) consumption. Corticotropin releasing factor (CRF) is a centrally expressed neuropeptide that has been implicated in the modulation of binge-like ethanol intake, and emerging data highlight sex differences in central CRF systems.

View Article and Find Full Text PDF

Corticotropin-releasing factor or hormone (CRF or CRH) and the urocortins regulate a plethora of physiological functions and are involved in many pathophysiological processes. CRF and urocortins belong to the family of CRF peptides (CRF family), which includes sauvagine, urotensin, and many synthetic peptide and non-peptide CRF analogs. Several of the CRF analogs have shown considerable therapeutic potential in the treatment of various diseases.

View Article and Find Full Text PDF

Chronic stress-induced synaptic changes to corticotropin-releasing factor-signaling in the bed nucleus of the stria terminalis.

Front Behav Neurosci

August 2022

Samuels Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.

The sexually dimorphic bed nucleus of the stria terminalis (BNST) is comprised of several distinct regions, some of which act as a hub for stress-induced changes in neural circuitry and behavior. In rodents, the anterodorsal BNST is especially affected by chronic exposure to stress, which results in alterations to the corticotropin-releasing factor (CRF)-signaling pathway, including CRF receptors and upstream regulators. Stress increases cellular excitability in BNST CRF+ neurons by potentiating miniature excitatory postsynaptic current (mEPSC) amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential).

View Article and Find Full Text PDF

Propofol addiction has been detected in humans and rats, which may be facilitated by stress. Corticotropin-releasing factor acts through the corticotropin-releasing factor (CRF) receptor-1 (CRF1R) and CRF2 receptor-2 (CRF2R) and is a crucial candidate target for the interaction between stress and drug abuse, but its role on propofol addiction remains unknown. Tail clip stressful stimulation was performed in rats to test the stress on the establishment of the propofol self-administration behavioral model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!