A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Allele-Specific QTL Fine Mapping with PLASMA. | LitMetric

Allele-Specific QTL Fine Mapping with PLASMA.

Am J Hum Genet

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Brigham & Women's Hospital, Division of Genetics, Boston, MA 02215, USA. Electronic address:

Published: February 2020

Although quantitative trait locus (QTL) associations have been identified for many molecular traits such as gene expression, it remains challenging to distinguish the causal nucleotide from nearby variants. In addition to traditional QTLs by association, allele-specific (AS) QTLs are a powerful measure of cis-regulation that are concordant with traditional QTLs but typically less susceptible to technical/environmental noise. However, existing methods for estimating causal variant probabilities (i.e., fine mapping) cannot produce valid estimates from asQTL signals due to complexities in linkage disequilibrium (LD). We introduce PLASMA (Population Allele-Specific Mapping), a fine-mapping method that integrates QTL and asQTL information to improve accuracy. In simulations, PLASMA accurately prioritizes causal variants over a wide range of genetic architectures. Applied to RNA-seq data from 524 kidney tumor samples, PLASMA achieves a greater power at 50 samples than conventional QTL-based fine mapping at 500 samples, with more than 17% of loci fine mapped to within five causal variants, compared to 2% by QTL-based fine mapping, and a 6.9-fold overall reduction in median credible set size compared to QTL-based fine mapping when applied to H3K27AC ChIP-seq from just 28 prostate tumor/normal samples. Variants in the PLASMA credible sets for RNA-seq and ChIP-seq were enriched for open chromatin and chromatin looping, respectively, at a comparable or greater degree than credible variants from existing methods while containing far fewer markers. Our results demonstrate how integrating AS activity can substantially improve the detection of causal variants from existing molecular data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011109PMC
http://dx.doi.org/10.1016/j.ajhg.2019.12.011DOI Listing

Publication Analysis

Top Keywords

fine mapping
20
causal variants
12
qtl-based fine
12
traditional qtls
8
existing methods
8
compared qtl-based
8
variants existing
8
fine
6
mapping
6
variants
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!