Stable operation of a doubly resonant femtosecond optical parametric oscillator (OPO) requires submicron matching of the OPO and pump laser cavity lengths, which is normally implemented using a dither-locking feedback scheme. Here we show that parasitic sum-frequency mixing between the pump and resonant pulses of a degenerate femtosecond OPO provides an error signal suitable for actuating the cavity length with the precision needed to maintain oscillation on a single fringe and at maximum output power. Unlike commonly used dither-locking approaches, the method introduces no modulation noise and requires no additional optical components, except for one narrowband filter. The scheme is demonstrated on a Ti:sapphire-pumped sub-40-fs PPKTP OPO, from which data are presented showing a tenfold reduction in relative intensity noise compared with dither locking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.45.000768 | DOI Listing |
Materials (Basel)
January 2025
China Building Materials Academy, Beijing 100024, China.
xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.
View Article and Find Full Text PDFThe topological disclination state (TDS) in topological insulators (TIs) has strong localization, and its impact on nonlinear effects has garnered significant attention. Second harmonic generations (SHGs) have been proven to be generated individually in topological corner states and topological edge states. However, the SHGs in TDSs have not been discussed so far.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment.
View Article and Find Full Text PDFLangmuir
December 2024
Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, Panepistimioupoli, Ioannina GR-45110, Greece.
Hydrogen atom transfer (HAT) and single electron transfer (SET) are two fundamental pathways for antiradical/antioxidant processes; however, a systematic operational evaluation of the same system is lacking. Herein, we present a comparative study of the HAT and SET processes applied to a library of well-characterized hybrid materials SiO@GA, SiO@GLA, SiO@GLAM, and the doubly hybrid material {GLA@SiO@GLAM}. Hydroxyl radicals (OH), produced by a Fenton system, react via the single electron transfer (SET) pathway and hydrogen atom transfer, through oxygen- and carbon-atoms, respectively, while the stable-radical DPPH via the HAT pathway through oxygen-atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!