Current silicon waveguide Bragg gratings typically introduce perturbation to the optical mode in the form of modulation of the waveguide width or cladding. However, since such a perturbation approach is limited to weak perturbations to avoid intolerable scattering loss and higher-order modal coupling, it is difficult to produce ultra-wide stopbands. In this Letter, we report an ultra-compact Bragg grating device with strong perturbations by etching nanoholes in the waveguide core to enable an ultra-large stopband with apodization achieved by proper location of the nanoholes. With this approach, a 15 µm long device can generate a stopband as wide as 110 nm that covers the entire ${\rm C} + {\rm L}$C+L band with a 40 dB extinction ratio and over a 10 dB sidelobe suppression ratio (SSR). Similar structures can be further optimized to achieve higher SSR of $ \gt {17}\;{\rm dB}$>17dB for a stopband of about 80 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.384688 | DOI Listing |
A wavelength demodulation method for ultra-short fiber Bragg grating (US-FBG) sensors based on an arrayed waveguide grating (AWG) and a convex optimization algorithm is proposed and demonstrated. Instead of measuring the output power ratio of the two adjacent AWG channels as previously done, in this work the wavelength demodulation is realized by reconstructing the US-FBG spectrum. The principle of spectral reconstruction involves using an AWG to sample the spectral information of US-FBG and constructing underdetermined matrix equations with the obtained prior information on transmission responses and the detected output power from multiple AWG channels.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China.
Monitoring of real-time flow and defects in the vacuum-assisted resin infusion (VARI) process can provide important guidelines for full impregnation of dry reinforcement. A weak fiber Bragg grating array was employed to obtain quasi-distributed monitoring results in real-time. Sensitivity testing of different kinds of coated optical fiber sensors (OFs) was carried out first, and the polyacrylate-coated OF showed a greater wavelength-shift response than the polyimide-coated one.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Photonics Research Group, Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy.
This study explores the achievement of a tunable true time-delay (TTD) system for a microwave phased-array antenna (MPAA) by incorporating the reversible phase-transition property of phase-change material (PCM) with Bragg gratings (BGs) and a cascade of three phase-shifted Bragg grating resonators (CPSBGRs). The goal was to design a low-power-consuming, non-volatile highly tunable compact TTD system for beam steering. A programmable on/off reflector was designed by changing a PCM-incorporated BG/CPSBGR from one phase to another.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
A respiration rate (RR) monitoring system was created by integrating a Fibre Bragg Grating (FBG) optical fibre sensor into a respirator mask. The system exploits the sensitivity of an FBG to temperature to identify an individual's RR by measuring airflow temperature variation near the nostrils and mouth. To monitor the FBG response, a portable, battery-powered, wireless miniature interrogator system was developed to replace a relatively bulky benchtop interrogator used in previous studies.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China.
The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!