AI Article Synopsis

  • Current silicon waveguide Bragg gratings use weak perturbations to modulate the optical mode, limiting their ability to create ultra-wide stopbands.
  • This research introduces an innovative method involving nanoholes etched in the waveguide core, allowing for stronger perturbations and enabling an ultra-large stopband of 110 nm in just a 15 µm long device.
  • The grating achieves a 40 dB extinction ratio and maintains over a 10 dB sidelobe suppression ratio, with potential to optimize for an even higher SSR exceeding 17 dB.

Article Abstract

Current silicon waveguide Bragg gratings typically introduce perturbation to the optical mode in the form of modulation of the waveguide width or cladding. However, since such a perturbation approach is limited to weak perturbations to avoid intolerable scattering loss and higher-order modal coupling, it is difficult to produce ultra-wide stopbands. In this Letter, we report an ultra-compact Bragg grating device with strong perturbations by etching nanoholes in the waveguide core to enable an ultra-large stopband with apodization achieved by proper location of the nanoholes. With this approach, a 15 µm long device can generate a stopband as wide as 110 nm that covers the entire ${\rm C} + {\rm L}$C+L band with a 40 dB extinction ratio and over a 10 dB sidelobe suppression ratio (SSR). Similar structures can be further optimized to achieve higher SSR of $ \gt {17}\;{\rm dB}$>17dB for a stopband of about 80 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.384688DOI Listing

Publication Analysis

Top Keywords

bragg grating
8
ultra compact
4
compact bragg
4
grating devices
4
devices broadband
4
broadband selectivity
4
selectivity current
4
current silicon
4
silicon waveguide
4
waveguide bragg
4

Similar Publications

A wavelength demodulation method for ultra-short fiber Bragg grating (US-FBG) sensors based on an arrayed waveguide grating (AWG) and a convex optimization algorithm is proposed and demonstrated. Instead of measuring the output power ratio of the two adjacent AWG channels as previously done, in this work the wavelength demodulation is realized by reconstructing the US-FBG spectrum. The principle of spectral reconstruction involves using an AWG to sample the spectral information of US-FBG and constructing underdetermined matrix equations with the obtained prior information on transmission responses and the detected output power from multiple AWG channels.

View Article and Find Full Text PDF

Monitoring of real-time flow and defects in the vacuum-assisted resin infusion (VARI) process can provide important guidelines for full impregnation of dry reinforcement. A weak fiber Bragg grating array was employed to obtain quasi-distributed monitoring results in real-time. Sensitivity testing of different kinds of coated optical fiber sensors (OFs) was carried out first, and the polyacrylate-coated OF showed a greater wavelength-shift response than the polyimide-coated one.

View Article and Find Full Text PDF

Phase-Change-Material-Based True Time-Delay System.

Sensors (Basel)

November 2024

Photonics Research Group, Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy.

This study explores the achievement of a tunable true time-delay (TTD) system for a microwave phased-array antenna (MPAA) by incorporating the reversible phase-transition property of phase-change material (PCM) with Bragg gratings (BGs) and a cascade of three phase-shifted Bragg grating resonators (CPSBGRs). The goal was to design a low-power-consuming, non-volatile highly tunable compact TTD system for beam steering. A programmable on/off reflector was designed by changing a PCM-incorporated BG/CPSBGR from one phase to another.

View Article and Find Full Text PDF

A respiration rate (RR) monitoring system was created by integrating a Fibre Bragg Grating (FBG) optical fibre sensor into a respirator mask. The system exploits the sensitivity of an FBG to temperature to identify an individual's RR by measuring airflow temperature variation near the nostrils and mouth. To monitor the FBG response, a portable, battery-powered, wireless miniature interrogator system was developed to replace a relatively bulky benchtop interrogator used in previous studies.

View Article and Find Full Text PDF

Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation.

Nanomaterials (Basel)

November 2024

Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China.

The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!