Three-Dimensional Trapping of Individual Rydberg Atoms in Ponderomotive Bottle Beam Traps.

Phys Rev Lett

Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France.

Published: January 2020

We demonstrate three-dimensional trapping of individual Rydberg atoms in holographic optical bottle beam traps. Starting with cold, ground-state ^{87}Rb atoms held in standard optical tweezers, we excite them to nS_{1/2}, nP_{1/2}, or nD_{3/2} Rydberg states and transfer them to a hollow trap at 850 nm. For principal quantum numbers 60≤n≤90, the measured trapping time coincides with the Rydberg state lifetime in a 300 K environment. We show that these traps are compatible with quantum information and simulation tasks by performing single qubit microwave Rabi flopping, as well as by measuring the interaction-induced, coherent spin-exchange dynamics between two trapped Rydberg atoms separated by 40  μm. These results will find applications in the realization of high-fidelity quantum simulations and quantum logic operations with Rydberg atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.023201DOI Listing

Publication Analysis

Top Keywords

rydberg atoms
16
three-dimensional trapping
8
trapping individual
8
individual rydberg
8
bottle beam
8
beam traps
8
rydberg
6
atoms
5
atoms ponderomotive
4
ponderomotive bottle
4

Similar Publications

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

We study resonance redistribution mechanisms inside a hot vapor cell. This is achieved by pumping cesium atoms on the 6S→6P resonance and subsequently probing the velocity distribution of the 6P population by a linear absorption experiment on the 6P→16S or 6P→15D transitions at 514 nm and 512 nm, respectively. We demonstrate that despite the existence of thermalization processes, traces of the initial velocity selection, imposed by the pump, survive in hyperfine levels of the intermediate (6P) state.

View Article and Find Full Text PDF

Atoms in Rydberg states are an important building block for emerging quantum technologies. While excitation to Rydberg orbitals is typically achieved in more than tens of nanoseconds, the physical limit is in fact much faster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg excitation of a rubidium atom by designing a dedicated pulsed laser system generating 480 nm pulses of 10 ps duration.

View Article and Find Full Text PDF

We present a novel approach to realize three-dimensional (3D) matter wave solitons (MWSs) transformation between different optical potential wells by manipulating their depths and centers. The 3D MWSs are obtained by the square operator method, and transformed to other types (elliptical/ring/necklace) by performing time evolution with the split-step Fourier method. The effectiveness and reliability of our approach is demonstrated by comparing the transformed solitons with those obtained iteratively using the square operator method.

View Article and Find Full Text PDF

Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!