The heats of formation of the carbonate, bicarbonate, and bicarbonate/hydroxide metal complexes, including hydrates of Mg, Ca, Fe, and Cd, and the oxides, dichlorides, and dihydroxides are predicted from atomization energies using correlated molecular orbital theory at the CCSD(T) level extrapolated to the complete basis set limit following the Feller-Peterson-Dixon (FPD) approach. Using the calculated gas phase values and the available experimental solid-state values, we predicted the cohesive energies of selective minerals. The gas phase decomposition energies of MO, CO, and HO follow the order Mg ≈ Ca > Cd ≈ Fe and correlate with the hardness of the metal +2 ions. Gas phase hydration energies show that the order is Mg > Fe > Ca ≈ Cd. There are a number of bulk hydrated Mg and Ca complexes that occur as minerals but there are few if any for Fe and Cd, suggesting that a number of factors are important in determining the stability of the bulk mineral hydrates. The FPD heats of formation were used to benchmark a range of density functional theory exchange-correlation functionals, including those commonly used in solid-state mineral calculations. None of the functionals provided chemical accuracy agreement (±1 kcal/mol) with the FPD results. The best agreement to the FPD results is predicted for ωB97X and ωB97X-D functionals with an average unsigned error of 10 kcal/mol. The worst functionals are PW91, BP86, and PBE with average unsigned errors of 32-36 kcal/mol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.9b11741 | DOI Listing |
ACS Nano
January 2025
Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76131, Germany.
Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Brown University, Providence, RI, USA.
Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Laboratory of Analytical Biochemistry & Metabolomics, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Saitama University, Saitama City, Saitama 338-8570, Japan.
Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
Recent progress in inverted perovskite solar cells (IPSCs) mainly focused on NiO modification and perovskite (PVK) regulation to enhance efficiency and stability. However, most works address only monofunctional modifications, and identical molecules with the ability to simultaneously optimize NiO interface and perovskite bulk phase have been rarely reported. This work proposes a dual modification approach using 4-amino-3,5-dichlorobenzotrifluoride (DCTM) to optimize both NiO upper interfaces and reduction of bulk defects in perovskite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!