Aim: To generate and validate predictive models for blood-brain permeation (BBB) of CNS molecules using the QSPR approach.
Background: Prediction of molecules crossing BBB remains a challenge in drug delivery. Predictive models are designed for the evaluation of a set of preclinical drugs which may serve as alternatives for determining BBB permeation by experimentation.
Objective: The objective of the present study was to generate QSPR models for the permeation of CNS molecules across BBB and its validation using existing in-house leads.
Methods: The present study envisaged the determination of the set of molecular descriptors which are considered significant correlative factors for BBB permeation property. Quantitative Structure- Property Relationship (QSPR) approach was followed to describe the correlation between identified descriptors for 45 molecules and highest, moderate and least BBB permeation data. The molecular descriptors were selected based on drug-likeness, hydrophilicity, hydrophobicity, polar surface area, etc. of molecules that served the highest correlation with BBB permeation. The experimental data in terms of log BB were collected from available literature, subjected to 2D-QSPR model generation using a regression analysis method like Multiple Linear Regression (MLR).
Results: The best QSPR model was Model 3, which exhibited regression coefficient as R= 0.89, F = 36; Q= 0.7805 and properties such as polar surface area, hydrophobic hydrophilic distance, electronegativity, etc., which were considered key parameters in the determination of the BBB permeability. The developed QSPR models were validated with in-house 1,5-benzodiazepines molecules and correlation studies were conducted between experimental and predicted BBB permeability.
Conclusion: The QSPR model 3 showed predictive results that were in good agreements with experimental results for blood-brain permeation. Thus, this model was found to be satisfactory in achieving a good correlation between selected descriptors and BBB permeation for benzodiazepines and tricyclic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573409916666200131114018 | DOI Listing |
Background: About half of the patients suffering from Alzheimer's disease (AD) display sleeping disorders. Disruptions in the central circadian clock (CC), located in the brain, accelerate AD pathogenesis, making the CC a promising target. In preclinical trials, this strategy have shown efficacy but clinical results are inconsistent.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tulane Brain Institute, Tulane University, New Orleans, LA, USA.
Background: Levels of inflammatory components gradually rise in tissues and blood as we age. This "inflammageing" process is often debilitating and even fatal. Cognitive impairment is one example of inflammageing's incapacitating nature.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is a progressive and multifactorial neurodegenerative disease that still has no cure. Different pathological processes contribute to the disease's development, such as the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), glutamatergic excitotoxicity, oxidative stress, and neuroinflammation. Chalcones are polyphenolic compounds of natural origin with a wide range of biological activities, and emerging studies have reported neurotrophic activity, anti-inflammatory and antioxidant effects, and the inhibition of Aβ aggregation.
View Article and Find Full Text PDFJ Control Release
December 2024
Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:
Many brain-targeting drug delivery strategies have been reported to permeate the blood-brain barrier (BBB) via hijacking receptor-mediated transport. However, these receptor-based strategies could mediate whole-brain BBB crossing due to the wide intracranial expression of target receptors and lead to unwanted accumulation and side effects on healthy brain tissues. Inspired by brain metastatic processes and the selectivity of brain metastatic cancer cells for the inflammatory BBB, a biomimetic nanoparticle was developed by coating drug-loaded core with the inflammatory BBB-seeking erythrocyte-brain metastatic hybrid membrane, which can resist homotypic aggregation and specially bind and permeate the inflammatory BBB for specific drug delivery.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
Red grapes contain resveratrol (Resv), a polyphenol with anti-inflammatory, anti-diabetic, and anticancer properties. In this study, in silico molecular docking was used to assess the binding affinity of Resv to target proteins. Resv was encapsulated in PEGylated liposomes (LNPs) using Phospholipon 90G, cholesterol, and DSPE-mPEG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!