Estimation in the Cox survival regression model with covariate measurement error and a changepoint.

Biom J

Departments of Epidemiology, Biostatistics, Nutrition and Global Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Published: September 2020

The Cox regression model is a popular model for analyzing the relationship between a covariate vector and a survival endpoint. The standard Cox model assumes a constant covariate effect across the entire covariate domain. However, in many epidemiological and other applications, the covariate of main interest is subject to a threshold effect: a change in the slope at a certain point within the covariate domain. Often, the covariate of interest is subject to some degree of measurement error. In this paper, we study measurement error correction in the case where the threshold is known. Several bias correction methods are examined: two versions of regression calibration (RC1 and RC2, the latter of which is new), two methods based on the induced relative risk under a rare event assumption (RR1 and RR2, the latter of which is new), a maximum pseudo-partial likelihood estimator (MPPLE), and simulation-extrapolation (SIMEX). We develop the theory, present simulations comparing the methods, and illustrate their use on data concerning the relationship between chronic air pollution exposure to particulate matter PM and fatal myocardial infarction (Nurses Health Study (NHS)), and on data concerning the effect of a subject's long-term underlying systolic blood pressure level on the risk of cardiovascular disease death (Framingham Heart Study (FHS)). The simulations indicate that the best methods are RR2 and MPPLE.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bimj.201800085DOI Listing

Publication Analysis

Top Keywords

measurement error
12
regression model
8
covariate domain
8
interest subject
8
data concerning
8
covariate
7
estimation cox
4
cox survival
4
survival regression
4
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!