Endosomal escape is a key step for intracellular drug delivery of nucleic acids, but reliable and sensitive methods for its quantitation remain an unmet need. In order to rationally optimize the mRNA transfection efficiency of a library of polymeric materials, we designed a deactivated Renilla luciferase-derived molecular probe whose activity can be restored only in the cytosol. This probe can be coencapsulated with mRNA in the same delivery vehicle, thereby accurately measuring its endosomal escape efficiency. We examined a library of poly(amine--ester) (PACE) polymers with different end groups using this probe and observed a strong correlation between endosomal escape and transfection efficiency ( = 0.9334). In addition, we found that mRNA encapsulation efficiency and endosomal escape, but not uptake, were determinant factors for transfection efficiency. The polymers with high endosomal escape/transfection efficiency also showed good transfection efficiency , and mRNA expression was primarily observed in spleens after intravenous delivery. Together, our study suggests that the luciferase probe can be used as an effective tool to quantitate endosomal escape, which is essential for rational optimization of intracellular drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195212 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.9b04426 | DOI Listing |
J Control Release
January 2025
Centre de Biophysique Moléculaire, CBM, CNRS UPR4301, Orléans, France. Electronic address:
The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University at Buffalo - The State University of New York, Chemistry, 679 NSC, 14260-3000, Buffalo, UNITED STATES OF AMERICA.
Domain antibodies such as monobodies provide an attractive immunoglobin fold for evolving high-affinity protein binders targeting the intracellular proteins implicated in cell signalling. However, it remains a challenge to endow cell permeability to these small and versatile protein binders. Here, we report a streamlined approach combining orthogonal crosslinking afforded by a genetically encoded β-lactam-lysine (BeLaK) and genetic supercharging to generate cell-penetrating monobodies.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.
Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.
Molecules
December 2024
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2024
Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.
Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!