Quantitative Assessment of Pulmonary Targeting of Inhaled Corticosteroids Using Ex Vivo Receptor Binding Studies.

AAPS J

Department of Pharmaceutics, JHMHC, P3-33, College of Pharmacy, University of Florida, P.O. Box 100494, Gainesville, FL, 32610, USA.

Published: January 2020

The goal of locally acting inhaled corticosteroids is to achieve distinct pulmonary effects with reduced systemic side effects. The present work using an ex vivo receptor binding model in rats was interested in assessing pulmonary targeting for several commercially available corticosteroids by monitoring receptor occupancies in the lung and systemic organs (liver, kidney, spleen, and brain) after intravenous (IV) injection or intratracheal (IT) instillation of a dry powder administration at a dose of 100 μg/kg. Pulmonary targeting, defined as the difference in cumulative receptor occupancies (AUC) between the lung and kidney after pulmonary delivery, differed across the investigated corticosteroids (ΔAUC range, 33 ± 46 to 143 ± 52% *h) with the highest degree found for corticosteroids with high systemic clearance and pronounced lipophilicity (presumably allowing a long pulmonary residence time). Additionally, this study demonstrated differences in the receptor occupancies across systemic organs. Using kidney receptor occupancies as the comparator, liver receptor occupancies were reduced (ΔAUC range: - 157 ± 43 to 178 ± 42% *h) after IV and IT administration for corticosteroids with high intrinsic clearance, while they were increased for corticosteroid prodrugs due to hepatic activation. Spleen receptor occupancies were increased after IT (ΔAUC range: 33 ± 35 to 135 ± 28% *h), but not after IV administration. This was especially true for slowly dissolving drugs. Reduced brain uptake was also observed for ciclesonide (CIC) and des-ciclesonide (desCIC), two compounds previously not investigated. In summary, ex vivo receptor binding studies represent a powerful tool to assess the fate of ICSs.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12248-019-0404-0DOI Listing

Publication Analysis

Top Keywords

receptor occupancies
24
pulmonary targeting
12
vivo receptor
12
receptor binding
12
Δauc range
12
receptor
9
inhaled corticosteroids
8
binding studies
8
systemic organs
8
corticosteroids high
8

Similar Publications

Dynamic reconfigurations of the functional connectome across different connectivity states are highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their established heritability, the specific polymorphisms that shape connectome dynamics are largely unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms (SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects (347 females) from the Human Connectome Project.

View Article and Find Full Text PDF

Decreased opioid receptor availability and impaired neurometabolic coupling as signatures of morphine tolerance in male rats: A positron emission tomography study.

Biomed Pharmacother

January 2025

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:

Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.

View Article and Find Full Text PDF

A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.

J Pharmacokinet Pharmacodyn

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.

Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.

View Article and Find Full Text PDF

Upregulation of p52-ZER6 (ZNF398) increases reactive oxygen species by suppressing metallothionein-3 in neuronal cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:

ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.

View Article and Find Full Text PDF

Elevated blood levels of estrogens are associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating blood hormone levels and intracellular hormone concentrations are not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!