Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mobile technologies are capable of offering individual level health care services to users. Mobile Healthcare (m-Healthcare) frameworks, which feature smartphone (SP) utilizations of ubiquitous computing made possible by applying wireless Body Sensor Networks (BSNs), have been introduced recently to provide SP clients with health condition monitoring and access to medical attention when necessary. However, in a vulnerable m-Healthcare framework, clients' personal info and sensitive data can easily be poached by intruders or any malicious party, causing serious security problems and confidentiality issues. In 2013, Lu et al. proposed a mobile-Healthcare emergency framework based on privacy-preserving opportunistic computing (SPOC), claiming that their splendid SPOC construction can opportunistically gather SP resources such as computing power and energy to handle computing-intensive Personal Health Information (PHI) with minimal privacy disclosure during an emergency. To balance between the risk of personal health information exposure and the essential PHI processing and transmission, Lu et al. presented a patient-centric privacy ingress control framework based on an attribute-based ingress control mechanism and a Privacy-Preserving Scalar Product Computation (PPSPC) technique. In spite of the ingenious design, however, Lu et al.'s framework still has some security flaws in such aspects as client anonymity and mutual authentication. In this article, we shall offer an improved version of Lu et al.'s framework with the security weaknesses mended and the computation efficiency further boosted. In addition, we shall also present an enhanced mobile-Healthcare emergency framework using Partial Discrete Logarithm (PDL) which does not only achieve flawless mutual authentication as well as client anonymity but also reduce the computation cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10916-019-1458-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!