Purpose: This study aimed to determine if major gene mutations including in KRAS, SMAD4, TP53, and CDKN2A were related to imaging phenotype using F-fluorodeoxyglucose (FDG) positron emission tomography (PET)-based radiomics in patients with pancreatic ductal adenocarcinoma (PDAC).

Methods: Data on 48 PDAC patients with pretreatment FDG PET/CT who underwent genomic analysis of their tumor tissue were retrospectively analyzed. A total of 35 unique quantitative radiomic features were extracted from PET images, including imaging phenotypes such as pixel intensity, shape, and textural features. Targeted exome sequencing using a customized cancer panel was used for genomic analysis. To assess the predictive performance of genetic alteration using PET-based radiomics, areas under the receiver operating characteristic curve (AUC) were used.

Results: Mutation frequencies were KRAS 87.5%, TP53 70.8%, SMAD4 25.0%, and CDKN2A 18.8%. KRAS gene mutations were significantly associated with low-intensity textural features, including long-run emphasis (AUC = 0.806), zone emphasis (AUC = 0.794), and large-zone emphasis (AUC = 0.829). SMAD4 gene mutations showed significant relationships with standardized uptake value skewness (AUC = 0.727), long-run emphasis (AUC = 0.692), and high-intensity textural features such as run emphasis (AUC = 0.775), short-run emphasis (AUC = 0.736), zone emphasis (AUC = 0.750), and short-zone emphasis (AUC = 0.725). No significant associations were seen between the imaging phenotypes and genetic alterations in TP53 and CDKN2A.

Conclusion: Genetic alterations of KRAS and SMAD4 had significant associations with FDG PET-based radiomic features in PDAC. PET-based radiomics may help clinicians predict genetic alteration status in a noninvasive way.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-020-04698-xDOI Listing

Publication Analysis

Top Keywords

genetic alterations
12
gene mutations
12
pet-based radiomics
12
textural features
12
imaging phenotype
8
phenotype f-fluorodeoxyglucose
8
positron emission
8
pancreatic ductal
8
ductal adenocarcinoma
8
kras smad4
8

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!