Enhancement of cytogenetic damage by chlorpromazine in human lymphocytes treated with alkylating antineoplastics and caffeine.

Mutat Res

Department of Medicinal Biology and Genetics, Faculty of Medicine, Aristotelian University, Thessaloniki, Greece.

Published: November 1988

In cultured human lymphocytes chlorpromazine (CPZ) was found to induce cell division delays and to have no effect on sister-chromatid exchanges (SCEs) or on mitotic indices (MIs). CPZ induces cytotoxic effects in combination with caffeine (CAF) and alkylating agents. In combination with CAF it induced cell division delays and suppression of MIs. In combination with melphalan (MEL) and CAF, CPZ synergistically induced SCEs, caused cell division delay and suppressed MIs. In combination with chlorambucil (CBC) and CAF, CPZ produced synergism on induction of SCEs, enhanced cell division delays and reduced MIs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0165-1218(88)90122-xDOI Listing

Publication Analysis

Top Keywords

cell division
16
division delays
12
human lymphocytes
8
mis combination
8
caf cpz
8
enhancement cytogenetic
4
cytogenetic damage
4
damage chlorpromazine
4
chlorpromazine human
4
lymphocytes treated
4

Similar Publications

Background: HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells.

View Article and Find Full Text PDF

Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer.

Nat Cancer

January 2025

Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting.

View Article and Find Full Text PDF

Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib.

View Article and Find Full Text PDF

Following the coronavirus disease 2019 (COVID-19) pandemic, the rise of long COVID, characterized by persistent respiratory and cognitive dysfunctions, has become a significant health concern. This leads to an increased role of complementary and alternative medicine in addressing this condition. However, our comprehension of the effectiveness and safety of herbal medicines for long COVID remains limited.

View Article and Find Full Text PDF

Infections associated with urinary catheters are often caused by biofilms composed of various bacterial species that form on the catheters' surfaces. In this study, we investigated the intricate interplay between Escherichia coli and Enterococcus faecalis during biofilm formation on urinary catheter segments using a dual-species culture model. We analyzed biofilm formation and global proteomic profiles to understand how these bacteria interact and adapt within a shared environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!