Leaf senescence is a complex organized developmental stage limiting the yield of crop plants, and alfalfa is an important forage crop worldwide. However, our understanding of the molecular mechanism of leaf senescence and its influence on biomass in alfalfa is still limited. In this study, RNA sequencing was utilized to identify differentially expressed genes (DEGs) in young, mature, and senescent leaves, and the functions of key genes related to leaf senescence. A total of 163,511 transcripts and 77,901 unigenes were identified from the transcriptome, and 5,133 unigenes were differentially expressed. KEGG enrichment analyses revealed that ribosome and phenylpropanoid biosynthesis pathways, and starch and sucrose metabolism pathways are involved in leaf development and senescence in alfalfa. GO enrichment analyses exhibited that six clusters of DEGs are involved in leaf morphogenesis, leaf development, leaf formation, regulation of leaf development, leaf senescence and negative regulation of the leaf senescence biological process. The WRKY and NAC families of genes mainly consist of transcription factors that are involved in the leaf senescence process. Our results offer a novel interpretation of the molecular mechanisms of leaf senescence in alfalfa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979412 | PMC |
http://dx.doi.org/10.7717/peerj.8426 | DOI Listing |
Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
BrCYP71 encoding multifunctional oxidase was mapped using BSA-Seq and linkage analysis, and its function in stay-green of pak choi was verified through Arabidopsis heterologous transgenic experiment. Stay-green refers to the phenomenon that plant leaves remain green during senescence and even after death, which is of great significance for improving the commerciality of leafy vegetables during storage or transportation and extending their shelf life. In this study, we identified a stay-green mutant of pak choi and named it nye2.
View Article and Find Full Text PDFPlant Dis
January 2025
Henan Normal University, College of Life Sciences, Xinxiang, Xinxiang, Henan, China, 453007.
Echinacea purpurea (Eastern Purple Coneflower) is a perennial herbaceous plant belonging to the Asteraceae. It originated from North America and is cultivated all over the world. Extracts of E.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.
View Article and Find Full Text PDFTree Physiol
January 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!