A substantial obstacle to the success of adoptive T cell-based cancer immunotherapy is the sub-optimal affinity of T-cell receptors (TCRs) for most tumor antigens. Genetically engineered TCRs that have enhanced affinity for specific tumor peptide-MHC complexes may overcome this barrier. However, this enhancement risks increasing weak TCR cross-reactivity to other antigens expressed by normal tissues, potentially leading to clinical toxicities. To reduce the risk of such adverse clinical outcomes, we have developed an extensive preclinical testing strategy, involving potency testing using 2D and 3D human cell cultures and primary tumor material, and safety testing using human primary cell and cell-line cross-reactivity screening and molecular analysis to predict peptides recognized by the affinity-enhanced TCR. Here, we describe this strategy using a developmental T-cell therapy, ADP-A2M4, which recognizes the HLA-A2-restricted MAGE-A4 peptide GVYDGREHTV. ADP-A2M4 demonstrated potent anti-tumor activity in the absence of major off-target cross-reactivity against a range of human primary cells and cell lines. Identification and characterization of peptides recognized by the affinity-enhanced TCR also revealed no cross-reactivity. These studies demonstrated that this TCR is highly potent and without major safety concerns, and as a result, this TCR is now being investigated in two clinical trials (NCT03132922, NCT04044768).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959444PMC
http://dx.doi.org/10.1080/2162402X.2019.1682381DOI Listing

Publication Analysis

Top Keywords

t-cell therapy
8
testing human
8
human primary
8
peptides recognized
8
recognized affinity-enhanced
8
affinity-enhanced tcr
8
tcr
5
preclinical evaluation
4
evaluation affinity-enhanced
4
affinity-enhanced mage-a4-specific
4

Similar Publications

Transcriptomic Profiles in Nasal Epithelium and Asthma Endotypes in Youth.

JAMA

January 2025

Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.

Importance: T helper 2 (T2) cells and T helper 17 (T17) cells are CD4+ T cell subtypes involved in asthma. Characterizing asthma endotypes based on these cell types in diverse groups is important for developing effective therapies for youths with asthma.

Objective: To identify asthma endotypes in school-aged youths aged 6 to 20 years by examining the distribution and characteristics of transcriptomic profiles in nasal epithelium.

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune-cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion.

View Article and Find Full Text PDF

People living with HIV (PLWH) beginning antiretroviral therapy (ART) retain a high burden of cytomegalovirus (CMV). CMV has been implicated in atherosclerosis in healthy adults, and a role in PLWH is plausible. Atherosclerosis has also been linked with γδ T cells and CMV seropositivity with altered γδ T cell profiles in other populations.

View Article and Find Full Text PDF

Cancer immunotherapy, specifically Chimeric Antigen Receptor (CAR)-T cell therapy, represents a significant breakthrough in treating cancers. Despite its success in hematological cancers, CAR-T exhibits limited efficacy in solid tumors, which account for more than 90% of all cancers. Solid tumors commonly present unique challenges, including antigen heterogeneity and complex tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!