Resistant hypertension (RH) is defined as uncontrolled blood pressure despite treatment with three or more antihypertensive medications, including, if tolerated, a diuretic in adequate doses. It has been widely known that race is associated with blood pressure control. However, intense debate persists as to whether this is solely explained by unadjusted socioeconomical variables or genetic variation. In this scenario, the main aim was to evaluate the association between genetic ancestry and resistant hypertension in a large sample from a multicenter trial of stage II hypertension, the ReHOT study. Samples from 1,358 patients were analyzed, of which 167 were defined as resistant hypertensive. Genetic ancestry was defined using a panel of 192 polymorphic markers. The genetic ancestry was similar in resistant (52.0% European, 36.7% African and 11.3% Amerindian) and nonresistant hypertensive patients (54.0% European, 34.4% African and 11.6% Amerindian) (p > 0.05). However, we observed a statistically suggestive association of African ancestry with resistant hypertension in brown patient group. In conclusion, increased African genetic ancestry was not associated with RH in Brazilian patients from a prospective randomized hypertension clinical trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992613 | PMC |
http://dx.doi.org/10.1038/s41598-020-58540-3 | DOI Listing |
Diabetes Obes Metab
January 2025
School of Health and Wellbeing, University of Glasgow, Glasgow, UK.
Aims: Glucagon-like peptide 1 receptor agonists (GLP1RA), used to treat type 2 diabetes and obesity, have been associated with off-target behavioural effects. We systematically assessed genetic variation in the GLP1R locus for impact on mental ill-health (MIH) and cardiometabolic phenotypes across diverse populations within UK Biobank.
Materials And Methods: All genetic variants with minor allele frequency >1% in the GLP1R locus were investigated for associations with MIH phenotypes and cardiometabolic phenotypes.
Breast Cancer Res
January 2025
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
Obesity is a modifiable risk factor for breast cancer. Yet, how obesity contributes to cancer initiation is not fully understood. The goal of this study was to determine if the body mass index (BMI) and metabolic hallmarks of obesity are related to DNA damage in normal breast tissue.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.
Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.
Cell Genom
January 2025
Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China. Electronic address:
Serum metabolites are potential regulators for chronic diseases. To explore the genetic regulation of metabolites and their roles in chronic diseases, we quantified 2,759 serum metabolites and performed genome-wide association studies (GWASs) among Han Chinese individuals. We identified 184 study-wide significant (p < 1.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Department of Botany and Beaty Biodiversity Centre, University of British Columbia, Canada.
The degree to which evolution repeats itself has implications regarding the major forces driving evolution and the potential for evolutionary biology to be a predictive (versus solely historical) science. To understand the factors that control evolutionary repeatability, we experimentally evolved four replicate hybrid populations of sunflowers at natural sites for up to 14 years and tracked ancestry across the genome. We found that there was very strong negative selection against introgressed ancestry in several chromosomes, but positive selection for introgressed ancestry in one chromosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!