Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving.

Nat Commun

Key Laboratory of Radiation Physics and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, P. R. China.

Published: January 2020

The preparation of subnanoporous covalent-organic-framework (COF) membranes with high performance for ion/molecule sieving still remains a great challenge. In addition to the difficulties in fabricating large-area COF membranes, the main reason is that the pore size of 2D COFs is much larger than that of most gas molecules and/or ions. It is urgently required to further narrow their pore sizes to meet different separation demands. Herein, we report a simple and scalable way to grow large-area, pliable, free-standing COF membranes via a one-step route at organic-organic interface. The pore sizes of the membranes can be adjusted from >1 nm to sub-nm scale by changing the stacking mode of COF layers from AA to AB stacking. The obtained AB stacking COF membrane composed of highly-ordered nanoflakes is demonstrated to have narrow aperture (∼0.6 nm), uniform pore distribution and shows good potential in organic solvent nanofiltration, water treatment and gas separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992836PMC
http://dx.doi.org/10.1038/s41467-019-14056-7DOI Listing

Publication Analysis

Top Keywords

cof membranes
12
pore sizes
8
cof
5
laminated self-standing
4
self-standing covalent
4
covalent organic
4
organic framework
4
framework membrane
4
membrane uniformly
4
uniformly distributed
4

Similar Publications

Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.

View Article and Find Full Text PDF

Thiol-Ene Click Chemistry: A General Strategy for Tuning the Properties of Vinylene-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.

Article Synopsis
  • Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are advanced materials known for their stable, crystalline structures and excellent optoelectronic properties, but their synthesis is limited due to challenges with C═C bonds.
  • Postsynthetic modification (PSM) offers a solution by allowing the introduction of functional groups into these frameworks, thus expanding their potential applications.
  • The study demonstrates a thiol-ene click reaction to successfully modify two COFs, enhancing their properties and structural versatility, which could lead to new applications in areas like hydrophilicity and proton conductivity.
View Article and Find Full Text PDF

The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP).

View Article and Find Full Text PDF

Molecular Design of Positively Charged 3D Covalent-Organic Framework Membranes for Li/Mg Separation.

Small Methods

December 2024

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.

3D covalent-organic framework (3D COF) membranes have unique features such as smaller pore sizes and more interconnected networks compared with 2D COF counterparts. However, the complicated and unmanageable fabrication hinders their rapid development. Molecular simulation, which can efficiently explore the structure-performance relationship of membranes, holds great promise in accelerating the development of 3D COF membranes.

View Article and Find Full Text PDF

Perspective of Tribological Mechanisms for α-Alkene Molecules with Different Chain Lengths from Interface Behavior.

Langmuir

December 2024

State Key Laboratory of Fluorinated Functional Membrane Materials, Dongyue Fluorosilicone Technology Group, Zibo 256400, China.

Three α-alkene lubricants, differentiated by chain length, were selected as model compounds to investigate the influence of chain length on tribological properties. The novelty of this study lies in setting chain length as the sole variable to explore its impact on surface and adsorption energy. Based on the above findings, the study provides a unique explanation of the intrinsic relationship between chain length and tribological performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!