Genomic and functional insights into the adaptation and survival of Chryseobacterium sp. strain PMSZPI in uranium enriched environment.

Ecotoxicol Environ Saf

Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India. Electronic address:

Published: March 2020

Metal enriched areas represent important and dynamic microbiological ecosystems. In this study, the draft genome of a uranium (U) tolerant bacterium, Chryseobacterium sp. strain PMSZPI, isolated from the subsurface soil of Domiasiat uranium ore deposit in Northeast India, was analyzed. The strain revealed a genome size of 3.8 Mb comprising of 3346 predicted protein-coding genes. The analysis indicated high abundance of genes associated with metal resistance and efflux, transporters, phosphatases, antibiotic resistance, polysaccharide synthesis, motility, protein secretion systems, oxidoreductases and DNA repair. Comparative genomics with other closely related Chryseobacterium strains led to the identification of unique inventory of genes which were of adaptive significance in PMSZPI. Consistent with the genome analysis, PMSZPI showed superior tolerance to uranium and other heavy metals. The metal exposed cells exhibited transcriptional induction of metal translocating P ATPases suggestive of their involvement in metal resistance. Efficient U binding (~90% of 100 μM U) and U bioprecipitation (~93-94% of 1 mM U at pH 5, 7 and 9) could be attributed as uranium tolerance strategies in PMSZPI. The strain demonstrated resistance to a large number of antibiotics which was in agreement with in silico prediction. Reduced gliding motility in the presence of cadmium and uranium, enhanced biofilm formation on uranium exposure and tolerance to 1.5 kGy of Co gamma radiation were perceived as adaptive responses in PMSZPI. Overall, the positive correlation observed between uranium/metal tolerance abilities predicted using genome analysis and the functional characterization reinforced the multifaceted adaptation strategies employed by PMSZPI for its survival in the soil of uranium ore deposit comprising of high concentrations of uranium and other heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110217DOI Listing

Publication Analysis

Top Keywords

uranium
9
chryseobacterium strain
8
strain pmszpi
8
uranium ore
8
ore deposit
8
metal resistance
8
genome analysis
8
uranium heavy
8
heavy metals
8
pmszpi
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!