The role of gonadotropins during early ovarian development in fish remains little understood. Concentrations of gonadotropins were therefore experimentally elevated in vivo by administration of recombinant follicle-stimulating hormone (rec-Fsh) or human chorionic gonadotropin (hCG) and the effects on ovarian morphology, sex steroid levels and mRNA levels of genes expressed in pituitary and ovary examined. Hormones were injected thrice at weekly intervals in different doses (20, 100 or 500 µg/kg BW for rec-Fsh and 20, 100 or 500 IU/kg BW for hCG). All treatments, especially at the highest doses of either rec-Fsh or hCG, induced ovarian development, reflected in increased oocyte size and lipid uptake. Both gonadotropins up-regulated follicle-stimulating hormone receptor (fshr) mRNA levels and plasma levels of estradiol-17β (E2). Exogenous gonadotropins largely decreased the expression of follicle-stimulating hormone β-subunit (fshb) and had little effect on those of luteinizing hormone β-subunit (lhb) in the pituitary. It is proposed that the effects of hCG on ovarian development in previtellogenic eels could be indirect as a significant increase in plasma levels of 11-ketotestosterone (11-KT) was found in eels treated with hCG. Using rec-Fsh and hCG has potential for inducing puberty in eels in captivity, and indeed, in teleost fish at large.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2020.113404 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!