The proteolytic cleavage of Fibronectin type III domain-containing 5 (FNDC5) generates soluble irisin. Initially described as being mainly produced in muscle during physical exercise, irisin mediates adipose tissue thermogenesis and also regulates carbohydrate and lipid metabolism. The aim of this study was to evaluate the hepatic expression of FNDC5 and its role in hepatocytes in Non-Alcoholic Fatty Liver (NAFL). Here we report that hepatic expression of FNDC5 increased with hepatic steatosis and liver injury without impacting the systemic level of irisin in mouse models of NAFLD (HFD and MCDD) and in obese patients. The increased Fndc5 expression in fatty liver resulted from its upregulation in hepatocytes and non-parenchymal cells in mice. The local production of Fndc5 in hepatocytes was influenced by genotoxic stress and p53-dependent pathways. The down-regulation of FNDC5 in human HepG2 cells and in primary mouse hepatocytes increased the expression of PEPCK, a key enzyme involved in gluconeogenesis associated with a decrease in the expression of master genes involved in the VLDL synthesis (CIDEB and APOB). These alterations in FNDC5-silenced cells resulted to increased steatosis and insulin resistance in response to oleic acid and N-acetyl glucosamine, respectively. The downregulation of Fndc5 also sensitized primary hepatocytes to apoptosis in response to TNFα, which has been associated with decreased hepatoprotective autophagic flux. In conclusion, our human and experimental data strongly suggest that the hepatic expression of FNDC5 increased with hepatic steatosis and its upregulation in hepatocytes could dampen the development of NAFLD by negatively regulating steatogenesis and hepatocyte death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2020.165705DOI Listing

Publication Analysis

Top Keywords

fatty liver
12
hepatic expression
12
expression fndc5
12
non-alcoholic fatty
8
fndc5
8
fndc5 increased
8
increased hepatic
8
hepatic steatosis
8
upregulation hepatocytes
8
hepatic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!