Amylosucrase (AS) catalyzes the transfer of a glucosyl unit from sucrose onto α-1,4-linked glucan polymers in starch. In this study, AS from Deinococcus geothermalis (DgAS) was applied to produce modified rice starches with slowly digestible properties. DgAS-treated waxy and normal rice starches showed significantly (p < 0.05) elevated degrees of polymerization, suggesting that the external chains were elongated. Additionally, the crystalline structures of starches changed from A- to B-type, and the temperature transition properties of enzymatically modified rice starches increased. The amounts of slowly digestible starch (SDS) increased remarkably (20.1% and 18.8%; waxy and normal rice starches, respectively), and the DgAS-treated rice starches were slowly hydrolyzed to glucose at the mammalian mucosal α-glucosidase level. Thus, DgAS-treated rice starches can be used to produce SDS-based ingredients that attenuate the glucose spike after glycemic food ingestion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.01.266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!