Within a remarkably short timespan the world population doubled and transitioned from an agrarian to an urban-industrial society. The transition was accompanied by the major expansion of industries that releases enormous amounts of toxicants into the air, water, and soil. Naturally occurring and synthetic chemicals compounds utilized the same signaling system as vertebrate internal cell signaling systems. The concept of environmental signals provides insights to address the impact of biochemically active toxicants on humans and the ecosystems that they share with other species. Disruption of the broad signaling systems has the potential for global change that transcends the biological systems of all organisms, including humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cppeds.2019.100739 | DOI Listing |
Nano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
Climate change significantly impacts the risk of eutrophication and, consequently, chlorophyll-a (Chl-a) concentrations. Understanding the impact of water flows is a crucial first step in developing insights into future patterns of change and associated risks. In this study, the Statistical DownScaling Model (SDSM)-a widely used daily downscaling method-is implemented to produce downscaled local climate variables, which serve as input for simulating future hydro-climate conditions using a hydrological model.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
The development of mechanically robust super-lubrication hydrogel materials with sustained lubricity at high contact pressures is challenging. In this work, inspired by the durable lubricity feature of the earthworm epidermis, a multilevel structural super-lubrication hydrogel (MS-SLH) system, the so-called lubricant self-pumping hydrogel, is developed. The MS-SLH system is manufactured by chemically dissociating a double network hydrogel to generate robust and wrinkled lubrication layer, and then laser etching was used to generate cylindrical texture pores as gland-like pockets for storing lubricants.
View Article and Find Full Text PDFFood Chem
December 2024
Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
The mechanisms underlying three thermal processing methods, namely hot-air drying, microwave irradiation, and heat fluidization, were systematically investigated to evaluate their effects on the structural, functional, and flour-processing properties of whole-grain highland barley. Starch granules were partially damaged when treated with hot-air drying and microwave irradiation. However, these granules were predominantly aggregated or encapsulated in proteins following heat fluidization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!