Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale And Objectives: The purpose of this study is to quantify breast radiologists' performance at predicting occult invasive disease when ductal carcinoma in situ (DCIS) presents as calcifications on mammography and to identify imaging and histopathological features that are associated with radiologists' performance.
Materials And Methods: Mammographically detected calcifications that were initially diagnosed as DCIS on core biopsy and underwent definitive surgical excision between 2010 and 2015 were identified. Thirty cases of suspicious calcifications upstaged to invasive ductal carcinoma and 120 cases of DCIS confirmed at the time of definitive surgery were randomly selected. Nuclear grade, estrogen and progesterone receptor status, patient age, calcification long axis length, and breast density were collected. Ten breast radiologists who were blinded to all clinical and pathology data independently reviewed all cases and estimated the likelihood that the DCIS would be upstaged to invasive disease at surgical excision. Subgroup analysis was performed based on nuclear grade, long axis length, breast density and after exclusion of microinvasive disease.
Results: Reader performance to predict upstaging ranged from an area under the receiver operating characteristic curve (AUC) of 0.541-0.684 with a mean AUC of 0.620 (95%CI: 0.489-0.751). Performances improved for lesions smaller than 2 cm (AUC: 0.676 vs 0.500; p = 0.002). The exclusion of microinvasive cases also improved performance (AUC: 0.651 vs 0.620; p = 0.005). There was no difference in performance based on breast density (p = 0.850) or nuclear grade (p = 0.270) CONCLUSION: Radiologists were able to predict invasive disease better than chance, particularly for smaller DCIS lesions (<2 cm) and after the exclusion of microinvasive disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382977 | PMC |
http://dx.doi.org/10.1016/j.acra.2019.12.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!