The segmentation of white blood cells and their nuclei is still difficult and challenging for many reasons, including the differences in their colour, shape, background and staining techniques, the overlapping of cells, and changing cell topologies. This paper shows how these challenges can be addressed by using level set forces via edge-based geometric active contours. In this work, three level set forces-based (curvature, normal direction, and vector field) are comprehensively studied in the context of the problem of segmenting white blood cell nuclei based on geometric flows. Cell images are first pre-processed, using contrast stretching and morphological opening and closing in order to standardise the image colour intensity, to create an initial estimate of the cell foreground and to remove the narrow links between lobes and cell bulges. Next, segmentation is conducted to prune out the white blood cell nucleus region from the cell wall and cytoplasm by combining the theory of curve evolution using curvature, normal direction, and vector field-based level set forces and edge-based geometric active contours. The overall performance of the proposed segmentation method is compared and benchmarked against existing techniques for nucleus shape detection, using the same databases. The three level set forces studied here (curvature, normal direction, and vector field) via edge-based geometric active contours achieve F-index values of 92.09%, 91.13%, and 90.76%, respectively, and the proposed segmentation method results in better performance than all other techniques for all indices, including Jaccard distance, boundary displacement error, and Rand index.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2019.103568 | DOI Listing |
ChemSusChem
December 2024
Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism.
View Article and Find Full Text PDFBiol Cybern
January 2025
CIAMS, Université Paris-Saclay, Orsay & Université d'Orléans, Orléans, France.
According to the Projective Consciousness Model (PCM), in human spatial awareness, 3-dimensional projective geometry structures information integration and action planning through perspective taking within an internal representation space. The way different perspectives are related to and transform a world model defines a specific perception and imagination scheme. In mathematics, such a collection of transformations corresponds to a 'group', whose 'actions' characterize the geometry of a space.
View Article and Find Full Text PDFNat Commun
January 2025
Morphing Matter Lab, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States.
Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.
View Article and Find Full Text PDFRSC Adv
January 2025
Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China.
Crafting highly dispersed active metal sites on catalysts is an optimal method for improving the catalytic reactivity and stability, as it would improve atomic utilization efficiency, enhance reactant adsorption and activation ability through unique geometric and electronic properties. In this study, two synthesis methods were employed (ammonia evaporation (AE) and the impregnation method (IM)) to load Rh species onto the ZSM-5 support in order to attain tunable dispersivity, during which a 1.25-fold increase in the total yield of liquid oxygenated products (32 433.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!