An artificially simulated outbreak of a respiratory infectious disease.

BMC Public Health

China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, No. 119, South 4th Ring Road West, Fengtai District, Beijing, China.

Published: January 2020

Background: Outbreaks of respiratory infectious diseases often occur in crowded places. To understand the pattern of spread of an outbreak of a respiratory infectious disease and provide a theoretical basis for targeted implementation of scientific prevention and control, we attempted to establish a stochastic model to simulate an outbreak of a respiratory infectious disease at a military camp. This model fits the general pattern of disease transmission and further enriches theories on the transmission dynamics of infectious diseases.

Methods: We established an enclosed system of 500 people exposed to adenovirus type 7 (ADV 7) in a military camp. During the infection period, the patients transmitted the virus randomly to susceptible people. The spread of the epidemic under militarized management mode was simulated using a computer model named "the random collision model", and the effects of factors such as the basic reproductive number (R), time of isolation of the patients (TOI), interval between onset and isolation (IOI), and immunization rates (IR) on the developmental trend of the epidemic were quantitatively analysed.

Results: Once the R exceeded 1.5, the median attack rate increased sharply; when R = 3, with a delay in the TOI, the attack rate increased gradually and eventually remained stable. When the IOI exceeded 2.3 days, the median attack rate also increased dramatically. When the IR exceeded 0.5, the median attack rate approached zero. The median generation time was 8.26 days, (95% confidence interval [CI]: 7.84-8.69 days). The partial rank correlation coefficients between the attack rate of the epidemic and R, TOI, IOI, and IR were 0.61, 0.17, 0.45, and - 0.27, respectively.

Conclusions: The random collision model not only simulates how an epidemic spreads with superior precision but also allows greater flexibility in setting the activities of the exposure population and different types of infectious diseases, which is conducive to furthering exploration of the epidemiological characteristics of epidemic outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993344PMC
http://dx.doi.org/10.1186/s12889-020-8243-6DOI Listing

Publication Analysis

Top Keywords

attack rate
20
respiratory infectious
16
outbreak respiratory
12
infectious disease
12
median attack
12
rate increased
12
infectious diseases
8
military camp
8
random collision
8
exceeded median
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!