Hexavalent chromium (Cr(VI)) is a groundwater contaminant that is potentially harmful to human health. Understanding the occurrence of Cr(VI) in groundwater resources is critical for evaluating its risks to human health. Here we report a large dataset (n = 1362) of Cr(VI) and total chromium (CrT) concentrations in public, private, and monitoring wells from different aquifers across North Carolina. These water quality data come from new and previous measurements conducted at Duke University, as well as data reported by the U.S. Environmental Protection Agency, the N.C. Department of Environmental Quality, and the U.S. Geological Survey. The data confirm that Cr(VI) is the predominant species of dissolved Cr and that groundwater from aquifers in the Piedmont region contain significantly higher concentrations than groundwater from the coastal plain. Though there is only one exceedance of the U.S. EPA Maximum Contaminant Level (100 µg/L for CrT) in the dataset, over half of all wells measured for Cr(VI) (470 out of 865) in the dataset exceeded the N.C. Health Advisory Level of 0.07 µg/L. Using information from this dataset, we explore three different approaches to predicting Cr(VI) in groundwater: (1) CrT concentrations as a proxy for Cr(VI); (2) Exceedance probabilities of health goals for groundwater from aquifers located in specific geologic areas; and (3) Censored linear regression using commonly measured field parameters (pH, electrical conductivity, dissolved oxygen) with relationships to Cr(VI) as regressors. Combining these approaches, we have identified several areas in the Piedmont region where Cr(VI) in drinking water wells is expected to be higher than the advisory level, which coincide with large population groundwater reliant populations. While this study focuses on N.C., the wide-spread occurrence of Cr(VI) in groundwater at concentrations above health guidelines in aquifers of the Piedmont region could pose high human health risks to large populations in the eastern U.S.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135135 | DOI Listing |
Environ Pollut
January 2025
Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, China.
Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.
View Article and Find Full Text PDFSci Rep
December 2024
Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, USA.
Groundwater monitoring is a crucial part of groundwater remediation that produces data from various strategically placed wells to maintain a water quality standard. Using the United States Department of Energy's Hanford 100-HRD area well data, recurrent neural networks are trained in the form of one-dimensional Convolutional Neural Networks (CNNs), Long Short Term Memory (LSTM) networks, and Dual-stage Attention-based LSTM (DA-LSTM) networks to reduce monitoring costs and increase data sampling responsiveness that is subject to laboratory analysis delays, with the best network being DA-LSTM achieving an R score of 0.82.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.
The study of the co-transport of Cr(VI) and microplastics (MPs) in porous media is important for predicting migration behavior and for achieving pollution removal in natural soils and groundwater. In this work, the effect of MPs on Cr(VI) migration in saturated porous media was investigated at different ionic strengths (ISs) and pHs. The results showed that pH 7 and low IS (5 mM), respectively, promoted the movement of Cr(VI), which was further promoted by the presence of MPs.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China.
The extensive application of chromium (Cr) in many industries has inevitably resulted in the release of Cr(VI) into the groundwater environment, thus posing damage to the ecosystem and human health. Nano zero-valent iron (nZVI) has been widely studied and applied in the remediation of Cr(VI)-contaminated water as an ideal material with high reductive capacity, which enables the transformation of teratogenic and carcinogenic Cr(VI) into less toxic Cr(III). This review comprehensively summarizes the preparation and modification methods of nZVI Cr(VI) removal performance and mechanisms by nZVI and modified nZVI materials.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mining and Geology, University of Belgrade, Đušina 7, Beograd, Serbia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!