One of the effects of climate change on boreal forest will be more frequent forest wildfires and permafrost thawing. These will increase the availability of soil organic matter (SOM) for microorganisms, change the ground vegetation composition and ultimately affect the emissions of biogenic volatile organic compounds (BVOCs), which impact atmospheric chemistry and climate. BVOC emissions from boreal forest floor have been little characterized in southern boreal region, and even less so in permafrost soil, which underlies most of the northern boreal region. Here, we report the long-term effects of wildfire on forest floor BVOC emission rates along a wildfire chronosequence in a Larix gmelinii forest in central Siberia. We determined forest floor BVOC emissions from forests exposed to wildfire 1, 23 and > 100 years ago. We studied how forest wildfires and the subsequent succession of ground vegetation, as well as changes in the availability of SOM along with the deepened and recovered active layer, influence BVOC emission rates. The forest floor acted as source of a large number of BVOCs in all forest age classes. Monoterpenes were the most abundant BVOC group in all age classes. The total BVOC emission rates measured from the 23- and >100-year-old areas were ca. 2.6 times higher than the emissions from the 1-year-old area. Lower emissions were related to a decrease in plant coverage and microbial decomposition of SOM after wildfire. Our results showed that forest wildfires play an important indirect role in regulating the amount and composition of BVOC emissions from post-fire originated boreal forest floor. This could have a substantial effect on BVOC emissions if the frequency of forest wildfires increases in the future as a result of climate warming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134851DOI Listing

Publication Analysis

Top Keywords

forest floor
24
bvoc emissions
20
boreal forest
16
forest wildfires
16
forest
13
bvoc emission
12
emission rates
12
bvoc
9
emissions
8
emissions boreal
8

Similar Publications

Sr and Cs distribution in Chornobyl forests: 30 years after the nuclear accident.

J Environ Radioact

January 2025

Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.

The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).

View Article and Find Full Text PDF

Soil and Site Productivity Effects on Above- and Belowground Radiata Pine Carbon Pools at Harvesting Age.

Plants (Basel)

December 2024

Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD)-ANID BASAL FB210015, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.

D. Don is the most widely planted forest species in Chile, making it crucial to understand carbon pools in adult plantations. This study aimed to evaluate the effect of soil type and site productivity on the total carbon stock in adult radiata pine plantations, considering sites with contrasting water and nutrient availability.

View Article and Find Full Text PDF

Background: Hypertension management is a national priority. However, hypertension control rates are suboptimal and vary across clinics, even among those in the same health system and geographic region.

Objective: To identify organizational barriers and facilitators that impact hypertension management at the provider, clinic, and health system level.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined seasonal and daily changes in soil CO2 flux (Fc) at Kaziranga National Park between November 2019 and March 2020, identifying pre-monsoon as the peak season for carbon release.
  • Fc showed strong positive correlations with air and soil temperatures, solar radiation, vapor pressure deficit, and photosynthetically active radiation, indicating these elements significantly influence soil respiration rates.
  • Diurnal patterns highlighted higher Fc during daytime hours and lower levels at night, emphasizing how environmental factors affect carbon dynamics in subtropical forests.
View Article and Find Full Text PDF

Purpose: To evaluate two primary outcomes in elite female athletes (EFAs) with severe stress urinary incontinence (SUI) 24 months post-intervention: return to elite-level competition and improvement in SUI symptoms. Clustering analysis was conducted to identify subgroups within the patient population and explore treatment efficacy.

Methods: A retrospective analysis was performed on 183 EFAs with severe SUI who underwent treatments including pelvic floor muscle training (PFMT), vaginal and urethral erbium laser (Fotona Laser), and mid-urethral sling (MUS) surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!