Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Immobilization of U(VI) by naturally ubiquitous ferrous ions (Fe(II)) has been considered as an efficient and ecofriendly method to retard the migration of aqueous U(VI) at many nuclear sites and surface environments. In this study, we conducted Fe-U coprecipitation experiments to investigate the mechanism and stability of uranium (U) precipitation induced by a small quantity of Fe(II) under oxygen-rich conditions. The experimental results suggest that the sedimentation rates of U(VI) by Fe(II) under neutral oxygen-rich conditions are more than 96%, which are about 36% higher than those without Fe(II) and 16% higher than those under oxygen-free conditions. The Fe-U coprecipitates were observed to remain stable under slightly acidic to neutral and oxygen-rich conditions. Fe(II) primarily settles down as low-crystalline iron oxide hydroxide. U(VI) mainly precipitates as three forms: 16-20% of U forms uranyl hydroxide and metaschoepite, which is absorbed on the surface of the solids; 52-56% of U is absorbed as discrete uranyl phases at the internal pores of iron oxide hydroxide; and 27-29% of U is probably incorporated into the FeO(OH) structure as U(V) and U(VI). The U(V) generated via one-electron reduction is somewhat resistant to the oxidation of O and the acid dissolution. In addition, nearly 70% of U and only about 15% of Fe could be extracted in 24 h by a hydrochloric acid solution with the H concentration ([H]) of 0.01 M, revealing that U(VI) immobilization by low concentration of Fe(II) combined with O has potential applications in the separation and recycling of aqueous uranium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.134827 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!