The present study describes the preparation of 50.3 nm superparamagnetic nanosorbents with high surface area for the adsorptive removal of lead and methyl orange from water. This material is based on the surface modification of iron oxide superparamagnetic nanoparticles with a double-shell coating of mesoporous silica whose porosity was increased up to 570 m/g by the addition of a porogenic material and its calcination. The adsorptive performance of the nanosorbent was evaluated as a function of several parameters (e.g. solution pH, pollutant initial concentration, and contact time), concluding that pHs around 5 are needed to avoid precipitation of Pb as Pb(OH) and the equilibrium adsorption capacity is reached after 2 h in all cases. The experimental data on the adsorption capacity of lead and methyl orange onto the nanosorbent were fit to a pseudo-second order kinetic model and Langmuir isotherm model. The maximum adsorption capacity value increases from 35 up to 50 mg/g for lead removal with increasing nanosorbent surface area. Contrary, for methyl orange the maximum adsorption goes up to 240 mg/g, indicating a larger nanosorbent surface affinity for the organic matter that is able to diffuse through the silica pores as probed by the intraparticle diffusion model. In addition, we found an good reusability (100% recovering after 4 sorption/desorption cycles for methyl orange removal), which makes of this magnetic nanosorbent suitable for remediation technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.134644 | DOI Listing |
Sci Rep
January 2025
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.
View Article and Find Full Text PDFHeliyon
December 2024
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China.
Nanoparticles have been extensively studied for many years due to their important roles in catalysis, metallurgy and high temperature superconductors. But, Nanoparticles are extremely unstable and easily react with other substances. So, to control the size and the shape of nanoparticles they must be stabilized.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!