Background And Purpose: Diclofenac is a widely used nonsteroidal anti-inflammatory drug. However, adverse effects in the kidney limit its clinical application. The present study was aimed to evaluate the potential effect of cilastatin on diclofenac-induced acute kidney injury and to clarify the potential roles of renal organic anion transporters (OATs) in the drug-drug interaction between cilastatin and diclofenac.
Experimental Approach: The effect of cilastatin was evaluated in diclofenac-induced acute kidney injury in mice. Human OAT1/3-transfected HEK293 cells and renal primary proximal tubule cells (RPTCs) were used to investigate OAT1/3-mediated transport and the cytotoxicity of diclofenac.
Key Results: Cilastatin treatment decreased the pathological changes, renal dysfunction and elevated renal levels of oxidation products, cytokine production and apoptosis induced by diclofenac in mice. Moreover, cilastatin increased the plasma concentration and decreased the renal distribution of diclofenac and its glucuronide metabolite, diclofenac acyl glucuronide (DLF-AG). Similarly, cilastatin inhibited cytotoxicity and mitochondrial damage in RPTCs but did not change the intracellular accumulation of diclofenac. DLF-AG but not diclofenac exhibited OAT-dependent cytotoxicity and was identified as an OAT1/3 substrate. Cilastatin inhibited the intracellular accumulation and decreased the cytotoxicity of DLF-AG in RPTCs.
Conclusion And Implications: Cilastatin alleviated diclofenac-induced acute kidney injury in mice by restoring the redox balance, suppressing inflammation, and reducing apoptosis. Cilastatin inhibited OATs and decreased the renal distribution of diclofenac and DLF-AG, which further ameliorated the diclofenac-induced nephrotoxicity in mice. Cilastatin can be potentially used in the clinic as a therapeutic agent to alleviate the adverse renal reaction to diclofenac.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161545 | PMC |
http://dx.doi.org/10.1111/bph.14957 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Biomed Pharmacother
November 2024
Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy. Electronic address:
The present study was carried out to evaluate and compare the protective potential of two well-known antioxidants of herbal origin in a mouse model of acute DIC-induced nephro- and hepatotoxicity. The tested antioxidants included lemongrass essential oil (LO) and its predominant bioactive constituent citral (CIT). A third herbal product, silymarin (SILY), was used as a reference hepato-renal protective agent.
View Article and Find Full Text PDFLife Sci
September 2024
Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Physiology, Faculty of Medicine, Armed Forces College of Medicine (AFCM), Cairo, Egypt. Electronic address:
Unlabelled: Diclofenac (DF), a non-steroidal anti-inflammatory drug, is commonly used to relieve pain and inflammation. High doses of DF might induce acute kidney injury (AKI), particularly in elderly, a known vulnerable population.
Aim: We aimed to assess the protective role of melatonin (Mel) on DF-induced AKI in aged rats and to highlight the underpinning mechanisms include, oxidative stress and inflammation focusing on microRNA-34a (miR-34a), nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 (Nrf2/HO-1) and NLR family-pyrin domain containing-3 (NLRP3) inflammasome pathways, and to elucidate the possibility of epithelial sodium channel (ENaC) involvement.
Food Chem Toxicol
May 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFDrug Res (Stuttg)
April 2024
Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil.
Background: Diclofenac is the non-steroidal anti-inflammatory drug (NSAID) mostly prescribed worldwide, but it is highly associated with hypertension and acute kidney injury. Despite that, little information is available about the renal effects of diclofenac in hypertensive individuals, which led us to carry out this comparative study between the renal effects of this NSAID in normotensive (NTR) and spontaneously hypertensive rats (SHR).
Methods: Male Wistar NTR and SHR were orally treated with vehicle (V: 10 mL/kg) or diclofenac sodium (D: 100 mg/kg) once a day for 3 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!