Dynamic nuclear polarization (DNP) provides the opportunity to boost liquid state magnetic resonance (MR) signals from selected nuclear spins by several orders of magnitude. A cryostat running at a temperature of ~ 1 K and a superconducting magnet set to between 3 and 10 T are required to efficiently hyperpolarize nuclear spins. Several DNP polarizers have been implemented for the purpose of hyperpolarized MR and recent systems have been designed to avoid the need for user input of liquid cryogens. We herein present a zero boil-off DNP polarizer that operates at 1.35 ± 0.01 K and 7 T, and which can polarize two samples in parallel. The samples are cooled by a static helium bath thermally connected to a 1 K closed-cycle He refrigerator. Using a modified version of the commercial fluid path developed for the SPINlab polarizer, we demonstrate that, within a 12-minute interval, the system can produce two separate hyperpolarized C solutions. The C liquid-state polarization of [1- C]pyruvate measured 26 seconds after dissolution was 36%, which can be extrapolated to a 55% solid state polarization. The system is well adapted for in vitro and in vivo preclinical hyperpolarized MR experiments and it can be modified to polarize up to four samples in parallel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165016 | PMC |
http://dx.doi.org/10.1002/nbm.4264 | DOI Listing |
Genes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Jixian Honors, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!