Magnesium-based biomaterials are attracting increasingly more attention for orthopedic applications based on their appropriate mechanical properties, biodegradability, and favorable biocompatibility. However, the high corrosion rate of these materials remains to be addressed. In this study, porous β-Ca3(PO4)2/Mg-Zn (β-TCP/Mg-Zn) composites were fabricated via a powder metallurgy method. The β-TCP/Mg-Zn composites with 6% porosity exhibited optimal mechanical properties, and thus, they were selected for surface modification. A novel dopamine/gelatin/recombinant human bone morphogenetic protein-2 (rhBMP-2) coating with demonstrated stability was prepared to further improve the corrosion resistance of the composite and enhance early osteoinductivity. The homogeneously coated β-TCP/Mg-Zn composite showed significantly improved corrosion resistance according to electrochemical and immersion tests. In addition, extracts from the dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn composite not only facilitated cell proliferation but also significantly enhanced the osteogenic differentiation of Sprague-Dawley rat bone marrow-derived mesenchymal stem cells in vitro. Furthermore, in vivo experiments were performed to evaluate the biodegradation, histocompatibility, and osteoinductive potential of the coated composite. No obvious pathological changes in the vital visceral organs were observed after implantation, and radiography and hematoxylin-eosin staining showed strong promotion of new bone formation, matched composite degradation and bone regeneration rates, and complete absorption of the released hydrogen gas. Collectively, these results indicate that the dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn composite offers improved corrosion resistance, favorable biocompatibility, and enhanced osteoinductive potential for use in the fabrication of orthopedic implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991953 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228247 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!