Extracellular vesicles (EVs) are membrane-enclosed vesicles which play important role for cell communication and physiology. EVs are found in many human biological fluids, including blood, breast milk, urine, cerebrospinal fluid (CSF), ejaculate, saliva etc. These nano-sized vesicles contain proteins, mRNAs, microRNAs, non-coding RNAs and lipids that are derived from producing cells. EVs deliver complex sets of biological information to recipient cells thereby modulating their behaviors by their molecular cargo. In this way EVs are involved in the pathological development and progression of many human disorders, including neurodegenerative diseases. In this study EVs purified by ultracentrifugation from CSF of patients with Parkinson's disease (PD) and individuals of the comparison group were characterized using nanoparticle tracking analysis, flow cytometry and cryo-electron microscopy. Vesicular size and the presence of exosomal marker CD9 on the surface provided evidence that most of the EVs were exosome-like vesicles. Cryo-electron microscopy allowed us to visualize a large spectrum of extracellular vesicles of various size and morphology with lipid bilayers and vesicular internal structures. Thus, we described the diversity and new characteristics of the vesicles from CSF suggesting that subpopulations of EVs with different and specific functions may exist.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991974 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227949 | PLOS |
Commun Biol
January 2025
Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.
View Article and Find Full Text PDFFront Physiol
January 2025
Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
A transport protein's turnover rate (TOR) is the maximum rate of substrate translocation under saturating conditions. This parameter represents the number of transporting events per transporter molecule (assuming a single transport site) per second (s). From this standpoint, a transporter's TOR is similar to an enzyme's catalytic constant.
View Article and Find Full Text PDFAndrology
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!