Background: HIV vaccine trials routinely measure multiple vaccine-elicited immune responses to compare regimens and study their potential associations with protection. Here we employ unsupervised learning tools facilitated by a bidirectional power transformation to explore the multivariate binding antibody and T-cell response patterns of immune responses elicited by two pox-protein HIV vaccine regimens. Both regimens utilized a recombinant canarypox vector (ALVAC-HIV) prime and a bivalent recombinant HIV-1 Envelope glycoprotein 120 subunit boost. We hypothesized that within each trial, there were participant subgroups sharing similar immune responses and that their frequencies differed across trials.

Methods And Findings: We analyzed data from three trials-RV144 (NCT00223080), HVTN 097 (NCT02109354), and HVTN 100 (NCT02404311), the latter of which was pivotal in advancing the tested pox-protein HIV vaccine regimen to the HVTN 702 Phase 2b/3 efficacy trial. We found that bivariate CD4+ T-cell and anti-V1V2 IgG/IgG3 antibody response patterns were similar by age, sex-at-birth, and body mass index, but differed for the pox-protein clade AE/B alum-adjuvanted regimen studied in RV144 and HVTN 097 (PAE/B/alum) compared to the pox-protein clade C/C MF59-adjuvanted regimen studied in HVTN 100 (PC/MF59). Specifically, more PAE/B/alum recipients had low CD4+ T-cell and high anti-V1V2 IgG/IgG3 responses, and more PC/MF59 recipients had broad responses of both types. Analyses limited to "vaccine-matched" antigens suggested that some of the differences in responses between the regimens could have been due to antigens in the assays that did not match the vaccine immunogens. Our approach was also useful in identifying subgroups with unusually absent or high co-responses across assay types, flagging individuals for further characterization by functional assays. We also found that co-responses of anti-V1V2 IgG/IgG3 and CD4+ T cells had broad variability. As additional immune response assays are standardized and validated, we anticipate our framework will be increasingly valuable for multivariate analysis.

Conclusions: Our approach can be used to advance vaccine development objectives, including the characterization and comparison of candidate vaccine multivariate immune responses and improved design of studies to identify correlates of protection. For instance, results suggested that HVTN 702 will have adequate power to interrogate immune correlates involving anti-V1V2 IgG/IgG3 and CD4+ T-cell co-readouts, but will have lower power to study anti-gp120/gp140 IgG/IgG3 due to their lower dynamic ranges. The findings also generate hypotheses for future testing in experimental and computational analyses aimed at achieving a mechanistic understanding of vaccine-elicited immune response heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992005PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226803PLOS

Publication Analysis

Top Keywords

immune responses
16
anti-v1v2 igg/igg3
16
pox-protein hiv
12
hiv vaccine
12
cd4+ t-cell
12
binding antibody
8
antibody t-cell
8
responses
8
vaccine-elicited immune
8
response patterns
8

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Aim: This study aimed to evaluate and compare the results of combination therapy involving bone grafting and two different resorbable collagen membranes in 1-, 2- and 3-wall infrabony defects.

Methods: A total of 174 patients with infrabony defects (≥ 7 mm periodontal probing depth) were randomized to receive deproteinized bovine bone mineral (DBBM) with either a native porcine non-crosslinked collagen membrane (N-CM, control, n = 87) or a novel porcine crosslinked collagen membrane (C-CM, test, n = 87). Clinical parameters, including periodontal probing depth (PPD), clinical attachment level (CAL), and gingival recession (GR), were recorded at baseline, 12 weeks, and 24 weeks.

View Article and Find Full Text PDF

In recent years, the incidence of gastric cancer (GC) has been on the rise, surgical procedures usually require the removal of part of gastric tissue connected with the tumor lesion, which leads to poor postoperative health and adverse prognosis in patients. Probiotics, as an active microorganism, play an important role in improving gastrointestinal function and enhancing immunity. In this study, we randomized 135 GC patients into a control group, a probiotic group and a combination group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!