Chemoprophylaxis (antibiotic prophylaxis) is a long relied-upon means of opportunistic infection management among HIV/AIDS patients, but its use represents an evolutionary tradeoff: Despite the benefits of chemoprophylaxis, widespread use of antibiotics creates a selective advantage for drug-resistant bacterial strains. Especially in the developing world, with combined resource limitations, antibiotic misuse, and often-poor infection control, the emergence of antibiotic resistance may pose a critical health risk. Extending previous work that demonstrated that this risk is heightened when a significant proportion of the population is HIV/AIDS-immunocompromised, we work to address the relationship between HIV/AIDS patients' use of antibiotic chemoprophylaxis and the emergence of resistance. We apply an SEIR compartmental model, parameterized to reflect varying percentages of chemoprophylaxis use among HIV/AIDS+ patients in a resource-limited setting, to investigate the magnitude of the risk of prophylaxis-associated emergence versus the individual-level benefits it is presumed to provide. The results from this model suggest that, while still providing tangible benefits to the individual, chemoprophylaxis is associated with negligible decreases in population-wide morbidity and mortality from bacterial infection, and may also fail to provide assumed efficacy in reduction of TB prevalence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992000 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225861 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!