A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimized artificial neural network to improve the accuracy of estimated fault impedances and distances for underground distribution system. | LitMetric

This paper proposes an approach to accurately estimate the impedance value of a high impedance fault (HIF) and the distance from its fault location for a distribution system. Based on the three-phase voltage and current waveforms which are monitored through a single measurement in the network, several features are extracted using discrete wavelet transform (DWT). The extracted features are then fed into the optimized artificial neural network (ANN) to estimate the HIF impedance and its distance. The particle swarm optimization (PSO) technique is employed to optimize the parameters of the ANN to enhance the performance of fault impedance and distance estimations. Based on the simulation results, the proposed method records encouraging results compared to other methods of similar complexity for both HIF impedance values and estimated distances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991958PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227494PLOS

Publication Analysis

Top Keywords

optimized artificial
8
artificial neural
8
neural network
8
distribution system
8
hif impedance
8
impedance distance
8
impedance
5
network improve
4
improve accuracy
4
accuracy estimated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!