Herein, an isothermal padlock probe-based assay for the simple and portable detection of pathogens coupled with a glucose oxidase (GOx)-based electrochemical readout is reported. Infectious diseases remain a constant threat on a global scale, as in recurring pandemics. Rapid and portable diagnostics hold the promise to tackle the spreading of diseases and decentralising healthcare to point-of-care needs. Ebola, a hypervariable RNA virus causing fatalities of up to 90% for recent outbreaks in Africa, demands immediate attention for bedside diagnostics. The design of the demonstrated assay consists of a rolling circle amplification (RCA) technique, responsible for the generation of nucleic acid amplicons as RCA products (RCPs). The RCPs are generated on magnetic beads (MB) and subsequently, connected via streptavidin-biotin bonds to GOx. The enzymatic catalysis of glucose by the bound GOx allows for an indirect electrochemical measurement of the DNA target. The RCPs generated on the surface of the MB were confirmed by scanning electron microscopy, and among other experimental conditions such as the type of buffer, temperature, concentration of GOx, sampling and measurement time were evaluated for the optimum electrochemical detection. Accordingly, 125 μg mL of GOx with 5 mM glucose using phosphate buffer saline (PBS), monitored for 1 min were selected as the ideal conditions. Finally, we assessed the analytical performance of the biosensing strategy by using clinical samples of Ebola virus from patients. Overall, this work provides a proof-of-concept bioassay for simple and portable molecular diagnostics of emerging pathogens using electrochemical detection, especially in resource-limited settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.112002 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
January 2025
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
In recent years, the bacteriophage Φ29 (Phi29) DNA polymerase has garnered increasing attention due to its high-fidelity amplification capacity at constant temperatures. To advance the industrial application of this type of isothermal polymerases, this study mined and characterized new enzymes from the microbial metagenome based on the known Phi29 DNA polymerase sequence. The results revealed that a new enzyme, Php29 DNA polymerase, was identified in the microbial metagenome with plants as the hosts.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China. Electronic address:
Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance.
View Article and Find Full Text PDFWater Res
January 2025
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden. Electronic address:
Wastewater-based surveillance (WBS) allows the analysis of pathogens, chemicals or other biomarkers in wastewater to derive unbiased epidemiological information at population scale. After re-gaining attention during the SARS-CoV-2 pandemic, the field holds promise as a surveillance and early warning system by tracking emerging pathogens with pandemic potential. Expanding the current toolbox of analytical techniques for wastewater analysis, we explored the use of Hyperplex PCR (hpPCR) to analyse SARS-CoV-2 mutations in wastewater samples collected weekly in up to 22 sites across Sweden between October 2022 and December 2023.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts.
View Article and Find Full Text PDFSmall
January 2025
Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!