Skin-conformal, soft material-enabled bioelectronic system with minimized motion artifacts for reliable health and performance monitoring of athletes.

Biosens Bioelectron

George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, 30322, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA. Electronic address:

Published: March 2020

Recent advances in biosensors, bioelectronics, and system integration allow the development of wristband-type devices for health and performance monitoring of athletes. Although these devices provide adequate sensing outputs, they suffer from signal loss due to improper contact of a rigid sensor with the skin. In addition, when a rubber band tightly secures the sensor to the skin, the gap between sensor and skin causes inevitable motion artifacts, resulting in corrupted data. Consequently, the rigidity and bulky form factor of the existing devices are not suitable for a practical use since athletes typically go through strenuous activities during training and matches. Here, we introduce a soft, wearable flexible hybrid electronics (WFHE) with integrated flexible sensors and circuits in an ultrathin, low-modulus elastomer. The thin-film bioelectronic system avoids the use of bulky, rigid sensors, while providing negligible mechanical and thermal burdens to the wearer. Enabling conformal contact between sensor and skin minimizes undesired motion artifacts. A set of computational and experimental studies of soft materials, flexible mechanics, and system packaging provides key fundamental design factors for a comfortable, reliable, waterproof bioelectronic system. Skin conformal WFHE with sparse signal reconstruction enables reliable, continuous monitoring of photoplethysmogram, heart rate, and activities of athletes. Development of a quantitative analysis between impact force and impact velocity extracted from motion acceleration provides an objective assessment of an athletic punching force. Collectively, this study shows the first demonstration of a wireless, soft, thin-film electronics for a real-time, reliable assessment of athletic health and performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.111981DOI Listing

Publication Analysis

Top Keywords

sensor skin
16
bioelectronic system
12
motion artifacts
12
health performance
12
performance monitoring
8
monitoring athletes
8
assessment athletic
8
system
5
skin
5
skin-conformal soft
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!