Although self-assembly of various peptides has been widely applied, it is challenging to obtain single-crystalline and layer-by-layered nanostructures in a two-dimensional system. Here, we report a method for controlling the morphology and crystal growth at room temperature by a redox-active peptide template that can specifically co-assemble with metal ions. During the crystal growth, a silver ion-coordinated α-helical peptide (+3HN-YYACAYY-COO-) induces long-range atomic ordering at the air/water interface, which leads to multilayered single-crystalline silver nanosheets without an additional annealing process. Furthermore, this peptide template can facilitate efficient electron transfer between the independent metal nanosheets to improve electrochemical properties. We expect that this peptide template-based single-crystal growth method can be extended to synthesize other materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b07392 | DOI Listing |
Talanta
January 2025
Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, People's Republic of China.
A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee, USA.
Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.
View Article and Find Full Text PDFMolecules
December 2024
Resolute Bio, 48 Dunham Rd., Suite 5400, Beverly, MA 01915, USA.
A systematic structure-activity and computational modeling analysis of a series of glucagon-like peptide-1 receptor (GLP-1R) agonists based upon an ultra-short GLP-1 peptide, H-His-Aib-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Bip-Bip-NH2, was conducted. This highly potent 11-mer peptide led to a deeper understanding of the α-helical bias of strategic α-methylation within the linear parent template as well as optimization of GLP-1R agonist potency by 1000-fold. These data were correlated with previously reported co-structures of both full-length GLP-1 analogs and progenitor N-terminal GLP-1 fragment analogs related to such ultra-short GLP-1R agonist peptides.
View Article and Find Full Text PDFCells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFChem Sci
December 2024
Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!