Two separate subfamilies of Plio-Pleistocene African pigs (suids) consecutively evolved hypsodont and horizodont molars with flat occlusal surfaces, commonly interpreted as an adaptive trait to a grazing diet, similar to that of the present warthogs (Phacochoerus spp.). To investigate this in detail, we studied the 3D-dental topography of fossil specimens from the Turkana Basin, using geographic information systems-based methods. To establish baselines for interpretation of the Turkana Basin suids, topography of third molars of extant suids with known diets were analyzed: grazing warthog (Phacochoerus africanus), herbivorous mixed-feeder forest hog (Hylochoerus meinertzhageni), omnivorous generalist wild boar (Sus scrofa), omnivorous fruit and tuber eater bush pig (Potamochoerus spp.), and omnivorous fruit eater babirusa (Babyrousa spp.) In addition, we analyzed supposedly browsing Miocene suids, Listriodon spp. The same topographic measures were applied to Plio-Pleistocene specimens from the Turkana Basin, Kenya: Notochoerus euilus, Notochoerus scotti, Kolpochoerus heseloni, and Metridiochoerus andrewsi. With some differences between techniques, 3D-dental topography analysis of extant suid molars mostly predicts the dietary differences between the species correctly. The grazing P. africanus differs from both the omnivorous suids and the herbivorous mixed-feeder H. meinertzhageni in all except one metrics. The omnivorous mostly tropical suids, Potamochoerus and Babyrousa, primarily differ from the generalist, S. scrofa, in the orientation patch count analysis, showing higher occlusal complexity in the latter. Although, there might be significant gaps between the morphological changes and the ecological changes, we conclude that based on comparison of dental topography with the present-day suids, N. scotti and M. andrewsi were most likely highly specialized grazers, while N. euilus and K. heseloni retained more of their ancestral, omnivorous heritage, but consumed grasses more than the extant omnivorous suids. RESEARCH HIGHLIGHTS: Dental topography can predict different diets in present-day wild pigs. The Plio-Pleistocene pigs in the Turkana Basin had dental topography mostly similar to extant grazing warthog, although some species also had resemblances to omnivorous forest pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.21103DOI Listing

Publication Analysis

Top Keywords

turkana basin
20
dental topography
16
suids
9
basin dental
8
3d-dental topography
8
specimens turkana
8
grazing warthog
8
herbivorous mixed-feeder
8
omnivorous
8
omnivorous fruit
8

Similar Publications

How animals respond to seasonal resource availability has profound implications for their dietary flexibility and realized ecological niches. We sought to understand seasonal dietary niche partitioning in extant African suids using intra-tooth stable isotope analysis of enamel. We collected enamel samples from canines of red river hogs/bushpigs ( spp.

View Article and Find Full Text PDF

Plants host diverse assemblages of fungi on their foliar tissues, both in internal compartments and on exterior surfaces. When plant distributions shift, they can move with their fungal associates (i.e.

View Article and Find Full Text PDF

Some insects, such as the painted lady butterfly , exhibit complex annual migratory cycles spanning multiple generations. Traversing extensive seas or deserts is often a required segment of these migratory journeys. We develop a bioavailable strontium isoscape for Europe and Africa and then use isotope geolocation combining hydrogen and strontium isotopes to estimate the natal origins of painted ladies captured north and south of the Sahara during spring and autumn, respectively.

View Article and Find Full Text PDF

For much of the Pliocene and Pleistocene, multiple hominin species coexisted in the same regions of eastern and southern Africa. Due to the limitations of the skeletal fossil record, questions regarding their interspecific interactions remain unanswered. We report the discovery of footprints (~1.

View Article and Find Full Text PDF

The process by which Palaeolithic Europe was transformed from a Neanderthal-dominated region to one occupied exclusively by Homo sapiens has proven challenging to diagnose. A blurred chronology has made it difficult to determine when Neanderthals disappeared and whether modern humans overlapped with them. Italy is a crucial region because here we can identify not only Late Mousterian industries, assumed to be associated with Neanderthals, but also early Upper Palaeolithic industries linked with the appearance of early H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!