Aims: Pulmonary arterial hypertension (PAH) is a progressive condition with high mortality. Quantitative cardiovascular magnetic resonance (CMR) imaging metrics in PAH target individual cardiac structures and have diagnostic and prognostic utility but are challenging to acquire. The primary aim of this study was to develop and test a tensor-based machine learning approach to holistically identify diagnostic features in PAH using CMR, and secondarily, visualize and interpret key discriminative features associated with PAH.

Methods And Results: Consecutive treatment naive patients with PAH or no evidence of pulmonary hypertension (PH), undergoing CMR and right heart catheterization within 48 h, were identified from the ASPIRE registry. A tensor-based machine learning approach, multilinear subspace learning, was developed and the diagnostic accuracy of this approach was compared with standard CMR measurements. Two hundred and twenty patients were identified: 150 with PAH and 70 with no PH. The diagnostic accuracy of the approach was high as assessed by area under the curve at receiver operating characteristic analysis (P < 0.001): 0.92 for PAH, slightly higher than standard CMR metrics. Moreover, establishing the diagnosis using the approach was less time-consuming, being achieved within 10 s. Learnt features were visualized in feature maps with correspondence to cardiac phases, confirming known and also identifying potentially new diagnostic features in PAH.

Conclusion: A tensor-based machine learning approach has been developed and applied to CMR. High diagnostic accuracy has been shown for PAH diagnosis and new learnt features were visualized with diagnostic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822638PMC
http://dx.doi.org/10.1093/ehjci/jeaa001DOI Listing

Publication Analysis

Top Keywords

machine learning
12
magnetic resonance
8
pulmonary arterial
8
arterial hypertension
8
tensor-based machine
8
learning approach
8
diagnostic accuracy
8
accuracy approach
8
approach
5
pah
5

Similar Publications

Developing a Sleep Algxorithm to Support a Digital Medicine System: Noninterventional, Observational Sleep Study.

JMIR Ment Health

December 2024

Otsuka Pharmaceutical Development & Commercialization, Inc, 508 Carnegie Center Drive, Princeton, NJ, 08540, United States, 1 609 535 9035.

Background: Sleep-wake patterns are important behavioral biomarkers for patients with serious mental illness (SMI), providing insight into their well-being. The gold standard for monitoring sleep is polysomnography (PSG), which requires a sleep lab facility; however, advances in wearable sensor technology allow for real-world sleep-wake monitoring.

Objective: The goal of this study was to develop a PSG-validated sleep algorithm using accelerometer (ACC) and electrocardiogram (ECG) data from a wearable patch to accurately quantify sleep in a real-world setting.

View Article and Find Full Text PDF

Background: Anxiety and depression represent prevalent yet frequently undetected mental health concerns within the older population. The challenge of identifying these conditions presents an opportunity for artificial intelligence (AI)-driven, remotely available, tools capable of screening and monitoring mental health. A critical criterion for such tools is their cultural adaptability to ensure effectiveness across diverse populations.

View Article and Find Full Text PDF

Predicting phage-host interactions via feature augmentation and regional graph convolution.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.

View Article and Find Full Text PDF

This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.

View Article and Find Full Text PDF

Objective: To explore whether radiomics analysis of pericoronary adipose tissue (PCAT) captured by coronary computed tomography angiography (CCTA) could discriminate unstable angina (UA) from stable angina (SA).

Methods: In this single-center retrospective case-control study, coronary CT images and clinical data from 240 angina patients were collected and analyzed. Patients with unstable angina ( = 120) were well-matched with those having stable angina ( = 120).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!