Thermophoresis, or the directional motion of colloidal particles in liquids driven by a temperature gradient, is of both fundamental interest and practical use. In this work we explore the thermophoresis of colloids suspended in nematic liquid crystals (LCs). We observe that the motion of these colloids is fundamentally different from that in isotropic systems as a result of elastic distortions in the director fields caused by the colloidal inclusions. In the case of a sufficiently large local temperature and gradient, the elastic energy drives negative thermophoresis of immersed particles, which has a strongly nonlinear dependence on temperature. We develop a theory that incorporates elastic energy minimization into the traditional thermophoretic formulation and demonstrated a good agreement with experimental observations. We also examine the temperature dependence of the effective viscosity of the colloids and highlight the large magnitude of the Soret coefficient (|ST| > 5000), which results from the inherent enhancement in thermophoresis due to elastophoretic considerations and suppression of Brownian diffusion in LC media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm02424g | DOI Listing |
Anal Chem
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Institute of New Concept Sensors and Molecular Materials, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for contamination detection. Fabricating efficient nanostructures with hotspots for signal enhancement and concentrating diluted target analyte molecules to the hotspots are critical for ultrasensitive SERS detection, which generally requires advanced instruments and intricate manipulations. Herein, we report a simple, low-cost, and high-efficiency paper device that can simultaneously concentrate the analytes and generate SERS hotspots rapidly with the assistance of laser-induced thermophoresis.
View Article and Find Full Text PDFACS Omega
October 2024
Department of Chemistry, Molecular Sciences Research Hub Imperial College, Imperial College London, London W12 0BZ, U.K.
Thermal gradients impart thermophoretic forces on colloidal particles, pushing colloids toward cold or hot regions, a phenomenon called thermophoresis. Current theoretical approaches relate the Soret coefficient to local changes in the interfacial tension around the colloid, which lead to fluid flow around the colloid surface. The Kapitza resistance, a key variable in the description of interfacial heat transport, is an experimentally accessible property that modifies interfacial thermal fields.
View Article and Find Full Text PDFJ Chem Phys
September 2024
Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
Thermophoresis has emerged as a powerful tool for characterizing and manipulating colloids at the nano- and micro-scales due to its sensitivity to colloid-solvent interactions. The use of surfactants enables the tailoring of surface chemistry on colloidal particles and the tuning of interfacial interactions. However, the microscopic mechanisms underlying thermophoresis in surfactant solutions remain poorly understood due to the complexity of multiscale interaction coupling.
View Article and Find Full Text PDFSmall Methods
July 2024
Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany.
The limitations of conventional template-based methods for the deposition of nanoparticle assemblies into defined patterns on solid substrates call for the development of techniques that do not require templates or lithographic masks. The use of optically-induced thermal gradients to drive the migration of colloids toward or away from a laser spot, known as opto-thermophoresis, has shown promise for the low-power trapping and optical manipulation of a variety of colloidal species. However, the printing of colloids using this technique has so far not been established.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2024
Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai 600020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India. Electronic address:
In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!