Photosynthesis reacts dynamic and in different time scales to changing conditions. Light and temperature acclimation balance photosynthetic processes in a complex interplay with the fluctuating environment. However, due to limitations in the measurements techniques, these acclimations are often described under steady-state conditions leading to inaccurate photosynthesis estimates in the field. Here we analyze the photosynthetic interaction with the fluctuating environment and canopy architecture over two seasons using a fully automated phenotyping system. We acquired over 700,000 chlorophyll fluorescence transients and spectral measurements under semi-field conditions in four crop species including 28 genotypes. As expected, the quantum efficiency of the photosystem II (F/F in the dark and F'/F' in the light) was determined by light intensity. It was further significantly affected by spectral indices representing canopy structure effects. In contrast, a newly established parameter, monitoring the efficiency of electron transport (F/F in the dark respective F'/F' in the light), was highly responsive to temperature (R up to 0.75). This parameter decreased with temperature and enabled the detection of cold tolerant species and genotypes. We demonstrated the ability to capture and model the dynamic photosynthesis response to the environment over entire growth seasons. The improved linkage of photosynthetic performance to canopy structure, temperature and cold tolerance offers great potential for plant breeding and crop growth modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962999 | PMC |
http://dx.doi.org/10.3389/fpls.2019.01482 | DOI Listing |
Sensors (Basel)
January 2025
Meteorology and Fluid Science Division, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi 270-1194, Chiba, Japan.
The electrical resistance (ER) method is widely used for atmospheric corrosion measurements and can be used to measure the corrosion rate accurately. However, severe errors occur in environments with temperature fluctuations, such as areas exposed to solar radiation, preventing accurate temporal corrosion rate measurement. To decrease the error, we developed an improved sensor composed of a reference metal film and an overlaid sensor metal film to cancel temperature differences between them.
View Article and Find Full Text PDFSensors (Basel)
January 2025
National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China.
Telephone time service is a wired time service that transmits time signals through a telephone network, with the advantages of simple receiving equipment and wide coverage. But the performance of time service is not high, usually several milliseconds. The time delay measurement of the telephone network is an important factor limiting the improvement in timing performance.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition and Dietetic Sciences, School of Health Sciences, Hellenic Mediterranean University, 72300 Sitia, Greece.
Background/objectives: Home isolation measures during the COVID-19 lockdown periods may have influenced individuals' lifestyles. The COVEAT study aimed to identify differences in children's and their parents' dietary behavior, children's body weight and parental body mass index (BMI) between two lockdown periods implemented in Greece.
Methods: In total, 61 participants (children 2-18 years and their parents) completed questionnaires about their lifestyle, body weight and height, and family socio-demographic data, during both lockdown periods (LDs) implemented in Greece (LD1 in March-May 2020; LD2 in December 2020-January 2021).
Plants (Basel)
January 2025
Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, . L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China.
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO concentration (). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO. In this study, we experimentally investigated the influence of elevated CO (from 400 to 800 μmol mol) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!