The immune system, and in particular, cytotoxic CD8 T cells (CTLs), plays a vital part in the prevention and elimination of tumors. In many patients, however, CTL-mediated tumor killing ultimately fails in the clearance of cancer cells resulting in disease progression, in large part due to the progression of effector CTL into exhausted CTL. While there have been major breakthroughs in the development of CTL-mediated "reinvigoration"-driven immunotherapies such as checkpoint blockade therapy, there remains a need to better understand the drivers behind the development of T cell exhaustion. Our study highlights the unique differences in T cell exhaustion development in tumor-specific CTL which arises over time in a mouse model of mesothelioma. Importantly, we also show that peripheral tumor-specific T cells have a unique expression profile compared to exhausted tumor-infiltrating CTL at a late-stage of tumor progression in mice. Together, these data suggest that greater emphasis should be placed on understanding contributions of individual microenvironments in the development of T cell exhaustion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968785 | PMC |
http://dx.doi.org/10.3389/fimmu.2019.03074 | DOI Listing |
Cancers (Basel)
December 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.
View Article and Find Full Text PDFNat Commun
January 2025
Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
We conducted a phase I trial to determine the optimal dose of triplet therapy with the tyrosine kinase inhibitor sitravatinib plus nivolumab plus ipilimumab in 22 previously untreated patients with advanced clear cell renal cell carcinoma. The primary endpoint was safety. Secondary endpoints were objective response rate (ORR), disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), overall survival (OS), 1-year survival probability, and sitravatinib pharmacokinetics.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan.
Despite the unprecedented therapeutic potential of immune checkpoint antibody therapies, their efficacy is limited partly by the dysfunction of T cells within the cancer microenvironment. Combination therapies with small molecules have also been explored, but their clinical implementation has been met with significant challenges. To search for antitumor immunity activators, the present study developed a cell-based system that emulates cancer-attenuated T cells.
View Article and Find Full Text PDFNat Immunol
January 2025
Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA.
T cells recognize neoepitope peptide-major histocompatibility complex class I on cancer cells. The strength (or avidity) of the T cell receptor-peptide-major histocompatibility complex class I interaction is a critical variable in immune control of cancers. Here, we analyze neoepitope-specific CD8 cells of distinct avidities and show that low-avidity T cells are the sole mediators of cancer control in mice and are solely responsive to checkpoint blockade in mice and humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!